
Akaros

Barret Rhoden, Kevin Klues, Andrew 
Waterman, Ron Minnich, David Zhu, Eric Brewer

UC Berkeley and Google



High Level View

● Research OS, made for single nodes
○ Large-scale SMP / many-core architectures
○ Scheduling decisions made by the cluster manager

■ Enforced by the OS
● Support for high-performance, parallel apps

○ Transparent access to physical resources
○ M:N threading model (sort of)
○ Performance isolation / minimize interference
○ Mix of low latency and batch workloads



Low Latency vs Batch Workloads

● Live service jobs (low latency):
○ Minimize latency, especially tail latency
○ Predictable, efficient performance
○ Guaranteed resources for peak workload

● Batch jobs:
○ Low priority
○ Fill in the peak/average gap
○ No guarantee for resources



Minimize Tail Latency
Akaros offers:
● Spatially allocated, dedicated cores to processes
● User-level thread schedulers running at high frequency 

(or any frequency)
● Low frequency resource reallocation, driven by cluster 

managers
● Control over IRQ routing: no unexpected interrupts on 

dedicated cores



Provisioning vs. Allocation
Provisioning:
● Guaranteed future access to resources
● Used for low-latency services

○ Amount based on peak load
○ Amount used at any time may be less

Allocation:
● The actual granting of the resource (dynamic)
● When provisioned, uninterruptible, irrevocable
● Without, can be revoked at any time

○ Used for batch jobs



Transparent Resources

● Expose info about the underlying system
● Provide interfaces to control guaranteed, 

allocated resources
● Virtual resources for naming, not for deception

○ Processes use virtual memory and paging
○ Can view their page tables
○ Physical memory is pinned - no swapping



Classic Threading Models
● 1:1 - One kernel thread/task/process per 

user thread (Unix, Mesa/Cedar)
○ Heavy-weight threads, decisions made by kernel

● M:1 - Many user threads per kernel thread 
(Green threads, Capriccio)
○ If one thread blocks, the entire process stalls 

● M:N - (Solaris’s Light Weight Processes, 
Scheduler Activations, Psyche)
○ Akaros is M threads : N cores



Many-Core Process (MCP)



MCP

● Treat parallel processes as a single entity
○ Gang scheduled, no kernel thread per “pthread”/core
○ Single address space

● The process is aware of its state
○ Number of cores, which ones are running, etc

● Allows 2-Level scheduling (2LS), spinlocks, etc



Cores != Threads

● Cores are for parallelism
● Threads are for concurrency (blocking I/O)
● Blocking (syscall, page fault) doesn’t mean 

the process loses the core
● Kernel threads are not part of the interface
● Notified of and can handle changing 

numbers of cores
● Process has full control over upcalls/events



Life for an MCP
● No unexpected interrupts
● Long time quanta
● Shared memory pages with the kernel

○ Procinfo (read-only), procdata (read-write)
● Have a set of virtual cores (vcores)

○ Pinned to physical cores when running
○ Can see the vcoremap
○ Each vcore has an “interrupt handling” context

● Schedule your own threads



Vcore Context
● Analogous to interrupt 

context in OSes
● Handles events and 

schedules threads
● Has its own stack and 

per-vcore storage
● Event driven
● IPIs / software IRQs 

disabled



Asynchronous Syscall Interface

● The struct syscall is the contract with the kernel
● The kernel may use threads and block 

internally, but userspace doesn’t know or care
● User threads (uthreads) that issue syscalls that 

blocked in the kernel hand off to the 2LS
● Userspace / 2LS can poll or request an event
● Can process syscalls on remote cores



What about Page Faults?

● Kernel will handle any soft faults (no blocking)
● Unhandled faults are reflected to userspace
● Faults in “vcore context” kill the process
● Pin critical code/data
● Uthreads that PF on file-backed mmaps are 

serviced by the 2LS via a syscall



Kernel Scheduling

● Different types of cores (can be dynamic)
● MCPs run on Coarse-Grained (CG) cores

○ No timer IRQs or per-core scheduler
○ Will run in kernel mode for IPIs for start-up/tear-down

● SCPs (single core processes), daemons, etc, 
run on Low-Latency (LL) cores
○ Management tasks, high frequency timer tick
○ Scheduler runs on an LL core (Core 0)



Kernel Perspective
● Monolithic kernel
● Can run the kernel anywhere; choose to run 

most of the kernel on a subset of cores
● Userspace determines where syscalls run

○ Locally, via sysenter/syscall traps into the kernel
○ Remotely, via shared memory rings (requires server)

● Designed to handle tricky circumstances
○ e.g. syscall completion event sent during preemption 

recovery of a lock-holder, while yielding spare cores



Akaros Programming Environment

● GCC toolchain, x86 and RISCV, 32/64 bit
● Glibc ported
● Some POSIX support (basic pthread apps)
● Plan 9 namespaces and network stack
● Ideal environment for Go!
● Custom extensions for Akaros (parlib)
● Barebones system (many things broken)



Plan 9 Stack

● Replacing our VFS with Plan 9 namespaces
○ Used Coccinelle to transform for Akaros
○ Ron and I can port a Plan 9 NIC driver in an hour

● Still have glibc, it just uses Plan 9 devices
● Work in progress to build mmap() for Plan 9
● Currently, we have an uneasy mix of VFS 

(with an in-memory FS) and Plan 9
● Plan 9’s networking stack needs work



Go on Akaros

● User-level scheduling and high concurrency: ideal for Go
● High performance Go apps run directly inside an MCP
● Passes 92% of the Go tests

○ 1962 pass, 36 fail, 112 skipped, 2110 total

Standard Linux Go on Linux Go on Akaros 



Early Evaluations / Microbenchmarks

● Intel Xeon E5-2670, 2.6GHz
● Sandy Bridge
● 16 Cores, 32 hyperthreads
● 256 GB RAM
● Linux 3.11, Ubuntu
● Akaros commit 0b940e7e



Thread Context Switch Latency

● Thread context-switch latency
● Pthread program:

pthread_thread() {
for num_loops

pthread_yield();
}



Thread Context Switch Latency
Values in nsec

Linux 
Pthreads with 

TLS

Linux 
Uthreads with 

TLS

Linux 
Uthreads 

without TLS

Akaros 
Uthreads with 

TLS

Akaros 
Uthreads 

without TLS

1 Thread 254 474 251 340 174

2 Threads 465 477 251 340 172

100 Threads 660 515 268 366 194

1000 Threads 812 583 291 408 221

● Thread local storage (TLS) hurts
● Uthread (2LS) scheduler is slow



Akaros User Context Switch Latency

● TLS, dumb scheduler, untuned
● Akaros’s user threading library (uthread.c) 

allows individual threads to have TLS or not
● All context switches drop into vcore context

Times in nsec

With TLS No TLS
No Locking in 

Scheduler
No Locking, 
No asserts

Switch_to 
(bypass 2LS 

decision)
2 threads 340 172 95 88 55

100 threads 366 194 113 105



Isolation, Interference, and Noise

● Fixed Time Quantum benchmark
○ Sottile and Minnich, Analysis of Microbenchmarks 

for Performance Tuning of Clusters, Cluster 2004
○ github.com/rminnich/ftq

● Perform work in a constant time interval
○ FTQ parameter: frequency of samples (e.g. 10KHz)

● FFT the result to detect periodic interference



Summary
● Akaros: research OS for high perf / parallel apps
● Provision and allocate ‘bare-metal’ resources
● Process model: cores != threads
● Go, Plan 9, and Glibc
● More info:

○ github.com/brho/akaros.git
○ http://akaros.cs.berkeley.edu/ 

● The giraffe’s name is Nanwan

http://github.com/brho/akaros.git
http://github.com/brho/akaros.git
http://akaros.cs.berkeley.edu/
http://akaros.cs.berkeley.edu/



