OS and Runtime Support for
Efficiently Managing Cores in
Parallel Applications

Kevin Klues
Dissertation Talk

University of California, Berkeley

Computer Science Division
May 11, 2015

Overview

e We assert that:

— Parallel applications can benefit from the
ability to explicitly control their thread
scheduling policies in user-space

—More importantly, they should have direct
access to cores and the ability to manage
those cores as they see fit

Overview

e We assert that:

— Parallel applications can benefit from the
ability to explicitly control their thread
scheduling policies in user-space

—More importantly, they should have direct
access to cores and the ability to manage
those cores as they see fit

* Current systems lack support for these
capabilities 2 We attempt to remedy that

Overview

e OS Support (Akaros)

— For direct access to cores

* Runtime Support (Parlib)

— For developing user-level schedulers on top of those cores

Overview

e OS Support (Akaros)
— New, experimental OS we developed
— The “"Many-Core Process”’ (MCP)
— APIs for dedicated access to cores (vcores)
— Decoupled user/kernel threading model

Overview

e OS Support (Akaros)
— New, experimental OS we developed
— The “"Many-Core Process”’ (MCP)
— APIs for dedicated access to cores (vcores)
— Decoupled user/kernel threading model

* Runtime Support (Parlib)
— User-level framework for parallel runtime development

— Focus on application-directed core management and
user-level threading abstractions (vcores / uthreads)

— Canonical parlib-based pthreads implementation
— Ports for both Akaros and Linux (with limited support)

Overview

Application
Application
\

\ 4 |
| \ / |

Operating System Operating System

I /

: // \\ | , , /I \\
el [[med] o]

Physics)

Engine([/'“b

\

Overview ope |

{/ \\
/[\
«)
\\
N’

e Lithe (Pan et al. 2010)

— Framework for composing multiple parallel runtimes in a
single application

— Structured sharing of cores between schedulers
— Notion of a parallel” function call

* My contributions
— Complete rewrite of Lithe to sit on top of Parlib
— Cleaner APIs, more complete implementation
— Generalization of a common " fork-join”” scheduler
— Stable ports of TBB, OpenMP and now pthreads
— Runs on both Linux and Akaros :

Overview

Application Application Application

i o | anime s

oeon e [EREREEE

1 \ "~
User-Level Scheduler
1 \ L =

Operating System Operating System Operating System

MODE HEOEE HoOon

Overview

e Port of Go to Akaros

— Gois an open-source language from Google designed for
building highly concurrent systems

— Has its own form of user-level scheduling (goroutines)

— Initial port built on parlib-based pthread implementation
— Took 1.5 years to complete

— Drove massive amounts of innovation in Akaros

@@@

Overview

Linux Current Akaros Future Akaros

Application Application Application

Go Runtime Go Runtime Go Runtime

= 2 2 2

'~ _ ‘pthreads 1
O~ \

Operating System Operating System Operating System

AODE HOEE CHEEn

Agenda

Motivation (a.k.a. why are we doing all this?)
Managing Cores in Akaros

Parlib Overview and Evaluation

Lithe Overview and Evaluation

Experience porting Go to Akaros

Summary

Resurgence of Parallelism

10,000,000

* Uniprocessor
vl
_ performance plateau

Intel CPU Trends :

[]
(sources: Intel, Wikipedia, K. Olukotun) - 1
100,000

* Increasing transistors

!

 Multiple cores at the
max clock speed

10,000

1,000

100

10

1 ' B stanies 00— Graph source: “The Free Lunch is Over: A
@ Clock Speed (MHz) .
¢ cee® aPower (W) Fundamental Turn Toward Concurrency in
© Perf/Clock (ILP) Soﬂ:wa ren

0 |
1970 1975 1980 1985 1990 1995 2000 2005 2010

http://www.gotw.ca/publications/concurrency-ddj.htm
13

Resurgence of Parallelism

* Large-scale SMP machines are on the rise
— What do we do with all these stinkin’ cores?

* Parallelism is not new; can learn from the past
— Large body of work spanning several decades

* The largest machines will be in data centers
— Important enough to warrant engineering effort at
all levels of the software stack

Low Latency vs. Batch Workloads

Low-Latency Batch
Job Job

| | | | |
| | | | |
Node Node Node Node Node

« Low-Latency Jobs
— Long periods of inactivity - Bursts of high demand
« Batch Jobs
— “Run-to-completion” model, no strict latency requirements

15

Low Latency vs. Batch Workloads

Low-Latency

e R N R R]
Node J‘| Node J‘| Node J‘| Node Node l_l‘|

« Low-Latency Jobs
— Long periods of inactivity - Bursts of high demand
« Batch Jobs
— “Run-to-completion” model, no strict latency requirements

16

Low Latency vs. Batch Workloads

Search Data Analytics

e R N R R]
Node J‘| Node J‘| Node J‘| Node Node l_l‘|

« Low-Latency Jobs
— Long periods of inactivity - Bursts of high demand
« Batch Jobs
— “Run-to-completion” model, no strict latency requirements

17

Data Center Provisioning

"Every year, we take the busiest minute of
the busiest hour of the busiest day and build
capacity on that”

— Scott Gulbransen, a spokesman for Intuit

http://news.cnet.com/TurboTax-e-filing-woes-draw-customer-ire/2100-1038 3-6177341.html

Data Center Provisioning

e Current solutions based on static allocation of resources to
individual jobs (done by cluster manager)

* Great for batch jobs! Crappy for low-latency ones ...

Data Center Provisioning

Current solutions based on static allocation of resources to
individual jobs (done by cluster manager)

Great for batch jobs! Crappy for low-latency ones ...

Low-latency jobs must be allocated all resources up-front for
peak-demand = wastes resources when not actively used

More resources? =2 global reshuffling of resources by cluster
manager, killing batch jobs, etc.

Data Center Provisioning

e Current solutions based on static allocation of resources to
individual jobs (done by cluster manager)

* Great for batch jobs! Crappy for low-latency ones ...

* Low-latency jobs must be allocated all resources up-front for
peak-demand = wastes resources when not actively used

* More resources? > global reshuffling of resources by cluster
manager, killing batch jobs, etc.

Good News: Akaros core management abstractions help to
alleviate some of these problems

Bad News: Individual pieces work, but not yet integrated into to
a fully usable system. We are working on it!

Managing Cores in Akaros

Managing Cores in Akaros

 The Many-Core Process
A single, unified abstraction for a parallel process

Request cores from the OS, not threads

All 1/0 completely asynchronous = process retains its cores at all times

Any application-level “threading” is implemented in user-space,

completely decoupled from the kernel

User-Level User-Level

Scheduler Scheduler

OS Scheduler

23

Managing Cores in Akaros

 The Many-Core Process

A single, unified abstraction for a parallel process
Request cores from the OS, not threads
All 1/0 completely asynchronous = process retains its cores at all times

Any application-level “threading” is implemented in user-space,
completely decoupled from the kernel

All cores gang scheduled by the kernel to increase performance of
user-level locks/barriers

No cores interrupted or preempted without prior agreement

User-Level User-Level

Scheduler Scheduler

OS Scheduler

24

Managing Cores in Akaros

 The Many-Core Process

— Gives developers more control over what runs where (and
when), so they can design their algorithms to take full
advantage of the parallelism available to them.

— Express parallelism via core requests and concurrency via
user-level threads.

User-Level User-Level

Scheduler Scheduler

OS Scheduler

25

ectru

Managing Cores in Akaros

The Many-Core Process

— Experiments show that MCP cores have an order of
magnitude less noise and fewer periodic signals than Linux

— Less interference = better CPU isolation
— Details in the FTQ section of Barret Rhoden’s dissertation

—

o o

— ~

S S

— —

@
o

ectru
1

o —
]

w0
T - =]
[T —
— [

=2

0 100 200 300 400 500

05

07

0 100 200 300 400 500

Managing Cores in Akaros

* Extended API for Provisioning Cores

Managing Cores in Akaros

* Extended API for Provisioning Cores
— Separate notions of allocation and provisioning

Provisioned:
Allocated:
Wants: O

[Pl [P
O O
O ©O

0

Managing Cores in Akaros

* Extended API for Provisioning Cores

— Separate notions of allocation and provisioning
— Low-latency jobs provision cores for future use (at peak-demand)

I
- -r-
| :I ! !

Provisioned: 16
Allocated: O
Wants: O

BB
0
0
0

29

Managing Cores in Akaros

* Extended API for Provisioning Cores
— Separate notions of allocation and provisioning
— Low-latency jobs provision cores for future use (at peak-demand)
— Only request the number of cores necessary for real-time demand

HE NN
Provisioned: 16 0_'r
Movans: 12 o HIHN
EER

30

Managing Cores in Akaros

Extended API for Provisioning Cores

— Separate notions of allocation and provisioning

— Low-latency jobs provision cores for future use (at peak-demand)
— Only request the number of cores necessary for real-time demand
— Batch jobs use remaining cores in the meantime

HE EEERE
Provisioned: 16 0 ...--
AIIo‘::vaat:tdS:: ii :

EEEEN

31

Managing Cores in Akaros

Extended API for Provisioning Cores

— Separate notions of allocation and provisioning

— Low-latency jobs provision cores for future use (at peak-demand)
— Only request the number of cores necessary for real-time demand
— Batch jobs use remaining cores in the meantime

— Revoke cores from batch jobs to meet increased real-time demand of low-
latency jobs (but don’t kill them unless absolutely necessary!)

OH 9
EE DRI
Provisioned: 16 0
AIIo‘::vaat:tds:: ii :
EEREE E

Managing Cores in Akaros

* Extended API for Provisioning Cores

Separate notions of allocation and provisioning

Low-latency jobs provision cores for future use (at peak-demand)
Only request the number of cores necessary for real-time demand
Batch jobs use remaining cores in the meantime

Revoke cores from batch jobs to meet increased real-time demand of low-
latency jobs (but don’t kill them unless absolutely necessary!)

Experiments showing this in action can be found chapter 7 of Barret
Rhoden’s dissertation 4

—\%,

EFE EEREN
Provisioned: 16 0
vl [| [T
EEEEN "

H 9
Ve

Integration with Cluster Manager

* Grand Vision (not yet implemented anywhere!):
— Partition jobs by type (Low-Latency, Batch)
— Provision for Low-Latency = Allocate for Batch
— Schedule and run batch jobs as before

— Schedule low-latency jobs on same resources, and let
provisioning take care of the rest

\‘
Low-Latency lf\‘\“\‘ =

e

==
-
N\

S

AS
N\
—_ T
r\ BT e AR
= N\ Y
- ‘——_\
~ N =\
=N N =X
N e
ol N A = SN RN\
L SN
i‘_(—_\ N
0\ N N
= N
Batch Job N
B
N
=
Q.

-\

Integration with Cluster Manager

* Assuming we have a system like this
— Individual jobs need to take control of their cores!
— Request cores as they need them, release them as they don’t
— Mutliplex user-level threads on top of them
— This is where Parlib, Lithe, and Go come in

Low-Latency

Job

Traditional Threading Models Used
for User-Level Scheduling

e 1:1 — User tells kernel what to schedule where/when
— Mach and recent Linux switchto extensions
* M:N — Multiplex user-threads onto kernel-threads
— Psyche, Scheduler Activations and Capriccio
* How to deal with Blocking 1/0?
— Delegate or Activation spawned as notification
— Don’t! = Make all I/0 non-blocking

* Akaros/Parlib follows a combination of these approaches

Akaros Threading Model

* Decouple threading models in Kernel and
User-Space

— Kernel doesn’t know about user threads
— User doesn’t know about kernel threads
— Transition context between the two: vcore context

* Enabled by:

— Ability to request cores, not threads from the
underlying OS

— Fully asynchronous system call interface

Parlib

 Framework for building user-level schedulers under
the Akaros threading model (written in C)

* Developers use parlib to build application-specific
schedulers, customized to their own particular needs.

Parlib

 Framework for building user-level schedulers under
the Akaros threading model (written in C)

* Developers use parlib to build application-specific
schedulers, customized to their own particular needs.

* For legacy applications (or those that don’t care as
much about their scheduling), we provide a parlib-
based implementation of pthreads that is API
compatible with the Linux NPTL

Parlib

Framework for building user-level schedulers under
the Akaros threading model (written in C)

Developers use parlib to build application-specific
schedulers, customized to their own particular needs.

For legacy applications (or those that don’t care as
much about their scheduling), we provide a parlib-
based implementation of pthreads that is API
compatible with the Linux NPTL

Supplement to glibc, which is also supported on
Akaros (c, c++, libgomp)

Limited port of parlib to Linux

Parlib Overview

Application
Application
\

\ 4 |
| \ / |

Operating System Operating System

I /

: // \\ | , , /I \\
el [z [emed] o]

Parlib Abstractions

Thread Support Library
Asynchronous Services
Asynchronous Event Delivery Mechanism

Other Abstractions

Parlib Abstractions

Thread Support Library
— Vcores, uthreads, and synchronization primitives

Asynchronous Services
— Syscalls, Alarms, POSIX Signal Delivery

Asynchronous Event Delivery Mechanism
— Active Messages triggered by events from async services

Other Abstractions
— Wait Free List, Slab Allocator, Dynamic Thread Local Storage

Parlib API

e Bi-directional API

Parallel Runtime — Library Calls
User-level implemented by
abstraction itself
- — Callbacks
vcore API Syscalls implemented by
uthread API Alarms consumer of that
Sync PrJ.mJ.tJ.vesEVent ADT POSIX Signals abstraction

Thread Support Asynchronous
Library Services
Other
Abstractions

Parlib API

e Bi-directional API

Parallel Runtime — Library Calls
User-level implemented by
abstraction itself
- — Callbacks
vcore API Syscalls implemented by
uthread API Alarms consumer of that
Sync PrJ.mJ.tJ.vesEVent ADT POSIX Signals abstraction

e Library Calls initiate

Thread Support Asynchronous .

e (Callbacks run

Other
scheduler code, or

respond to external
events

Uthread Context vs. Vcore Context

* Vcore Context
— a.k.a. scheduler context

— Transition context popped into whenever the kernel hands
a core to user space (first time coming up, notification, etc.)

— Has own stack, register state, and thread local storage (TLS)
— Serves to handle events, run scheduler code, etc.

Uthread Context vs. Vcore Context

* Vcore Context
— a.k.a. scheduler context

— Transition context popped into whenever the kernel hands
a core to user space (first time coming up, notification, etc.)

— Has own stack, register state, and thread local storage (TLS)
— Serves to handle events, run scheduler code, etc.

— Always entered at the top of the stack and never returns
(no need to save its context upon exiting)

— Only options in vcore context are to find a uthread to run,
or yield the vcore back to the system

— User-space counterpart to interrupt context in the kernel

Uthread Context vs. Vcore Context

* Uthread Context
— Normally what we think of as a thread context
— Serves to run application code inside a thread
— Transitions to vcore context to make scheduling decisions

Uthread Context vs. Vcore Context

uthread context vcore context

"\

function() {
uthread_yield(callback);;E

I ~., callback(uthread) ({
’:.‘.:v

run_uthread(uthread);

v
-“‘

Uthread Context vs. Vcore Context

uthread context vcore context

"\

function
() A Always start at top of stack

uthread yield(callback); in fresh context!
I ~., callback(uthread) ({
: run uthread(uthread);

v
-“‘

Events and Async Services

Events and Async Services

* Event Delivery follows producer/consumer model
— Vcores set up queues for event delivery (consumers)
— Async services post events to those queues (producers)

— Consumers register handlers based on event type to be triggered when
event extracted from queue

— Events carry payloads specific to event type
— Think active messages

Events and Async Services

* Event Delivery follows producer/consumer model

Vcores set up queues for event delivery (consumers)
Async services post events to those queues (producers)

Consumers register handlers based on event type to be triggered when
event extracted from queue

Events carry payloads specific to event type
Think active messages

e Optional notification when event posted to queue

Post event = Interrupt uthread - Run vcore entry ()

Events and Async Services

* Event Delivery follows producer/consumer model
— Vcores set up queues for event delivery (consumers)
— Async services post events to those queues (producers)

— Consumers register handlers based on event type to be triggered when
event extracted from queue

— Events carry payloads specific to event type
— Think active messages

e Optional notification when event posted to queue

— Post event = Interrupt uthread = Run vcore entry ()

void vcore entry() {
handlé:events();
if (current uthread)
run_current uthread();
sched ops->sched entry(); // should not return
vcore yield();

Example: Syscall Completion

* Intercept syscalls, and block thread in user-
space on I/O operation

* Notify process and unblock thread after syscall
completion event

Example: Syscall Completion

Syscall Service void akaros_syscall (args...) {

Scheduler Implementation event_queue[max vcores()];
ev_handlers[EV_SYSCALL] = handle_syscall;

void handle syscall (event t* e) ({

Example: Syscall Completion

Syscall Service

First, issue syscall ...

Scheduler Implementation

void akaros syscall(args...) {
struct-gyscall syscall;
syscall.args = args;
do_syscall(&syscall); // always returns

event queue[max vcores()];
ev_handlers[EV_SYSCALL] = handle_syscall;

void handle syscall (event t* e) ({

Example: Syscall Completion

Syscall Service

First, issue syscall ...
If not done
* Yield to vcore context
e Save uthread reference
* Set up event queue
e Set to notify

Scheduler Implementation

void akaros syscall(args...) {
struct-gyscall syscall;
syscall.args = args;
do_syscall(&syscall); // always returns
if (!syscall.done) {
uthread yield(callback, syscall);

}
void callback (uthread, syscall) ({

syscall->uthread = uthread;
syscall->evq = event queue[vcore id()];
syscall->notify = true;

event queue[max vcores()];
ev_handlers[EV_SYSCALL] = handle_syscall;

void handle syscall (event t* e) ({

Example: Syscall Completion

Syscall Service

e First, issue syscall ...
* If not done
* Yield to vcore context
e Save uthread reference
* Set up event queue
e Set to notify

Scheduler Implementation

* Grap syscall from payload

e Grab uthread reference

* Make thread runnable again
* sched_entry() implicit

void akaros syscall(args...) {
struct-gyscall syscall;
syscall.args = args;
do_syscall(&syscall); // always returns
if (!syscall.done) {

uthread yield(callback, syscall);
}

void callback (uthread, syscall) ({
syscall->uthread = uthread;

syscall->evq = event queue[vcore id()];

syscall->notify = true;

event queue[max vcores()];
ev_handlers[EV_SYSCALL] = handle_syscall;

void handle syscall (event t* e) ({
syscall = (struct syscall*)e.payload;
uthread = syscall->uthread;
uthread runnable (uthread) ;

Parlib-based Pthreads

Per-vcore run queues with rudimentary stealing algorithm
Extended API for setting scheduling period based on alarms

Integration with high-level sync primitives for mutex,
barrier, condition variables, and futexes

Integration with the Async Syscall service
Rudimentary affinity algorithm for preferred vcore queues

Careful cache alignment of all data structures (per vcore
data and thread struct data interfere minimally)

Parlib on Linux

Port of parlib to Linux (including pthread library)

Fakes vcore abstraction and has limited support for
asynchronous syscalls

So long as only 1 application running, good enough for
experiments = more fair comparison to Linux NPTL

Parlib on Linux

Port of parlib to Linux (including pthread library)

Fakes vcore abstraction and has limited support for
asynchronous syscalls

So long as only 1 application running, good enough for
experiments = more fair comparison to Linux NPTL

Experiments

— Context Switch Overhead

— Flexibility in scheduling policies
— NAS Benchmarks (OpenMP)

— Kweb throughput

Parlib on Linux

Port of parlib to Linux (including pthread library)

Fakes vcore abstraction and has limited support for
asynchronous syscalls

So long as only 1 application running, good enough for
experiments = more fair comparison to Linux NPTL

Experiments
— Context Switch Overhead

— Kweb throughput

Parlib Experiments

 Machine Specs (c99):
— 2 lvy Bridge, 8-core 2.6Ghz CPUs (16 cores, 32 hyperthreads)
— 8 16GB DDR3 1600Mhz DIMMs (128GB total)
— 4 Intel i350 1GbE interfaces
— 1 1TB Hard Disk Drive

Parlib Experiments

 Machine Specs (c99):
— 2 lvy Bridge, 8-core 2.6Ghz CPUs (16 cores, 32 hyperthreads)
— 8 16GB DDR3 1600Mhz DIMMs (128GB total)
— 4 Intel i350 1GbE interfaces
— 1 1TB Hard Disk Drive

Parlib Experiments

 Machine Specs (c99):
— 2 lvy Bridge, 8-core 2.6Ghz CPUs (16 cores, 32 hyperthreads)
— 8 16GB DDR3 1600Mhz DIMMs (128GB total)
— 4 Intel i350 1GbE interfaces
— 1 1TB Hard Disk Drive

* 3.13.0-32-generic kernel with patches from Andi Kleen
to enable the rdfsbase and wrfsbase instructions
(for user-level TLS support)

Context Switch Latency (ns)

1400

1200

1000

800

600

400

200

Parlib Experiments

Average Context Switch Latency (Per Core)

T

T

T

BRN00

upthread

save-fpstate
swap-tls (wrfsbase)
use-queue-locks

handle-events
raw-ctxswitch

T

T

Single Core

Linux-NPTL

1 2 threads/core
[—1 1 thread/core

820ns
2
757ns
561ns
490ns
241ns
1 Socket
All cores

No Hyperthreads No Hyperthreads Full Hyperthreads

825ns
+

563ns

242ns

2 Sockets
All Cores

819ns

1202ns
—— -]

2 Sockets
All Cores

67

Context Switch Latency (ns)

1400

1200

1000

800

600

400

200

Parlib Experiments

Average Context Switch Latency (Per Core)

T

T

upthread Linux-NPTL

[save-fpstate [2 threads/core
1202
| swap-tls (wrfsbase)| |ZZ3 1 thread/core —_ -
B use-queue-locks
|l handle-events
Bl raw-ctxswitch
820ns 825ns 819ns
i 757ns
- 561ns 563ns
490ns S.jI'x 3.4x
241ns 242ns
Single Core 1 Socket 2 Sockets 2 Sockets
All Cores

No HyperthreadS@X'No Hyperthreads

ull Hyperthreads

68

Context Switch Latency (ns)

1400

1200

1000

800

600

400

200

Parlib Experiments

Average Context Switch Latency (Per Core)

T

T

T

BRN00

upthread

save-fpstate
swap-tls (wrfsbase)
use-queue-locks

handle-events
raw-ctxswitch

T

T

Single Core

Linux-NPTL

1 2 threads/core
[1 thread/corep

1202ns
— -]

820ns
2
757ns
561ns
490ns
241ns
1 Socket
All cores

No Hyperthreads No Hyperthreads

825ns
+

563ns

242ns

2 Sockets
All Cores

819ns

2 Sockets

Full Hyperthreads

69

Millions of Context Switches / Second

160

140

120

100

80

60

40

20

Parlib Experiments

Total Context Switches / Second

upthread

1 thread/core

2 threads/core
4 threads/core
8 threads/core
16 threads/core
32 threads/core
64 threads/core

Linux-NPTL

1 thread/core

2 threads/core
4 threads/core
8 threads/core
16 threads/core
32 threads/core
64 threads/core

15 20

Number of Cores

35

70

500000

400000

300000

200000

Requests / Second

100000

Parlib Experiments

Average Webserver Throughput

Bl nginx
Bl kweb-linux-custom-sched
B kweb-linux-upthread

Bl kweb-linux-NPTL

15 20 25 30
Number of Cores

35

71

500000

6% better $

400000

300000

200000

Requests / Second

100000

Parlib Experiments

Average Webserver Throughput

Bl nginx
Bl kweb-linux-custom-sched
B kweb-linux-upthread

Bl kweb-linux-NPTL

15 20 25 30
Number of Cores

35

72

Parlib Experiments

500000 | Average ngserver Throughput

6% better $

400000 |
2
§ 300000 - Bl nginx
i Bl kweb-linux-custom-sched
b Peak at mmm kweb-linux-upthread
() .
2 200000 | 7 Cores B kweb-linux-NPTL
g 1

100000 |

O 1 1 1 1

0 5 10 15 20 25 30
Number of Cores

500000

Parlib Experiments

Average Webserver Throughput

6% better $

400000

300000

200000

Requests / Second

100000

Peak at
7 Cores

Peak at

15 Cores

Bl nginx

Bl kweb-linux-custom-sched

B kweb-linux-upthread
Bm kweb-linux-NPTL

I
I
I
!

15

20 25 30

Number of Cores

35

74

500000

Parlib Experiments

Average Webserver Throughput

6% better $

400000

300000

200000

Requests / Second

100000

Peak at
7 Cores

Peak at

15 Cores

Bl nginx

Bl kweb-linux-custom-sched

B kweb-linux-upthread
Bm kweb-linux-NPTL

I
I
I
!

15

20 25 30

Number of Cores

35

75

Lithe

Lithe

* Proposed to solve the problem of software
composability between parallel libraries

I
Physics |, Al

: /'}"::::::1’-”_ [—
Engine||
N\

|
1)

OpenMP ||
Lk

) (e

{ i\
(
)

Graphics

Lithe

* Proposed to solve the problem of software
composability between parallel libraries

— Can cause inefficiencies if libraries all launch threads and
compete in the OS for scheduling

— Exacerbated when libraries use barriers for synchronization
— Lithe = structures sharing of cores

\
Physics
Engine((
L W\

N Y

Lithe

* Proposed to solve the problem of software
composability between parallel libraries

— Can cause inefficiencies if libraries all launch threads and
compete in the OS for scheduling

— Exacerbated when libraries use barriers for synchronization
— Lithe = structures sharing of cores

Physics |

Engine((‘

| m\
‘\v,-—-\

* Originally proposed in the
Parlab by Pan et. al. in 2010

* All work presented here is an
extension of this previous work

Lithe on Parlib

* Although not originally proposed as such, Lithe fits
nicely as an extension to Parlib’s user-level scheduling
framework

Lithe on Parlib

* Although not originally proposed as such, Lithe fits
nicely as an extension to Parlib’s user-level scheduling
framework
— Where Parlib only allows for a single user-level scheduler

— Lithe allows for many, creating hierarchy of schedulers as new
ones are added and removed dynamically

Lithe on Parlib

* Although not originally proposed as such, Lithe fits
nicely as an extension to Parlib’s user-level scheduling
framework

— Where Parlib only allows for a single user-level scheduler
— Lithe allows for many, creating hierarchy of schedulers as new
ones are added and removed dynamically
* Solves problems not addressed in original version

— No async services in original (especially important for syscalls)

— Cleaned up interfaces, and better usage semantics in the new
version (e.g. vcore context for callbacks)

— New generic fork-join”’ scheduler implemention
— New port of pthreads to Lithe

Lithe Interposing on Parlib

Parallel Runtime

User-level
Scheduler

Parallel Runtime

1.

User-level
Scheduler
vcore API Syscalls
uthread API Alarms
Sync Primitives POSIX Signals
l Event API l
Thread Support Asynchronous
Library Services
Parlib

Hart API
Context API
Scheduler API
Sync Primitives

Lithe

T

vcore API
uthread APT
Sync Primitives

Event API

Syscalls
Alarms
POSIX Signals

!

Thread Support
Library

{

Asynchronous
Services

Parlib

Lithe Interposing on Parlib

* Harts == Vcores
e Contexts == Uthreads Parallel Runtime
* Scheduler API == extension of Parlib’s User-level
Scheduler
Hart API
Context API
Scheduler API
Parallel Runtime Sync Primitives
User-level
Scheduler I
vcore API Syscalls vcore API Syscalls
uthread API Alarms uthread API Alarms
Sync Primitives POSIX Signals Sync Primitives POSIX Signals
l Event API l l Event API l
Thread Support Asynchronous Thread Support Asynchronous
Library Services Library Services
Parlib Parlib

Lithe Evolution

Application Application Application

i o | anime s

oeon e [EREREEE

1 \ ~
User-Level Scheduler
1 \ L =

Operating System Operating System Operating System

AODE HOEE HOon

Parallel Function Calls

 Like parlib, also based on library calls / callbacks API

* Adds primitives for dynamically adding / removing
schedulers as parallel function” calls are made

Parallel Function Calls

 Like parlib, also based on library calls / callbacks API

* Adds primitives for dynamically adding / removing
schedulers as parallel function” calls are made

void parallel function() {
Enter Scheduler —> lithe sched enter (new sched());

for (int 1 = 0; 1 < num contexts; 1++)
Spawn / Enqueue ctx = context alloc();
—> add to scheduler queue (sched, ctx);

Contexts

}
Request More Cores =—> lithe hart request(num contexts);

Wait For all Contexts ——>» join on all contexts();
Exit Scheduler ——>» lithe sched exit();
}

{

87

Lithe API

Library Call Callback
Hart Management é lithe_hart_request(amt) | parent->hart_request(amt)

. . parent->hart_return()
lithe-hart.yield() parent->hart_enter()

lithe_hart_grant(child) | child->hart_enter()

Scheduler Management

Library Call Callback
lithe_sched_init(sched, callbacks, main_ctx) -
Scheduler Management é 1ithe_sched_enter(child) parent->child_enter(child)

child->sched_enter()
parent->child_exit(child)
child->sched_exit()
lithe_sched_current() -

lithe_sched_exit()

Context Management

Library Call Callback

lithe_context_init(ctx, entry_func, arg) -

lithe_context_reinit(ctx, entry_func, arg) -

lithe_context_recycle(ctx, entry_func, arg) -

lithe_context_reassociate(ctx, sched) -

lithe_context_cleanup(ctx) -

lithe_context_run(ctx) -
Context Management é lithe_context_self()

current_scheduler->context_block(ctx)
lithe_context_block(callback, arg) callback(ctx, arg)
current_scheduler->hart_enter()

current_scheduler->context_unblock(ctx)

Lithe context.unblock (ctx) current_scheduler->hart_enter()

current_scheduler->context_yield(ctx)

lithe context.yield() current_scheduler->hart_enter()

current_scheduler->context_exit(ctx)

lithe_context_exit
O current_scheduler->hart_enter()

Lithe Ports and Experiments

* Ports exist for
— OpenMP
— TBB (Intel’s Thread Building Blocks Library)
— Pthreads

Lithe Ports and Experiments

* Ports exist for
— OpenMP
— TBB (Intel’s Thread Building Blocks Library)
— Pthreads

* All ports based on a common Fork-Join”” scheduler

* Experiments
— SPQR Benchmark
— Kweb File Throughput and Thumbnail Generation

SPQR Benchmark

Sparse QR Factorization
(Tim Davis, Univ of Florida)

Column
Elimination
Tree

&b

Software Architecture

Operating System

61 [G B

91

SPQR Benchmark

\
Give resources to OpenMIP
y
/ / \ Give resources to TBB
© 00 O O © O _

92

Time (sec)

Performance of SPQR with Lithe

45

SPQR Benchmark

90

350

4 40

4 35

4 30

4 25

4 20

4 15

landmark

deltaX

80

70

60

50

40

30

20

10

ESOC

300

250

200

150

100

50

B Out of the Box - Linux NPTL
B Manually Tuned - Linux NPTL
Bl Out of the Box - upthread
[Lithe

Ruccil

\
OpenMP
/
] TBB
O 00 O oo

93

Operating System

1 [G

Thumbnail
Generation

File
Download

94

Throughput
(Requests / Second)

Latency (s)

Kweb Throughput and Latency
Mixing File Requests and Thumbnail Generation

BN Linux NPTL W upthread BN upthread-lithe

Thumbnail Request Throughput
1 Il T I 1 '

3.5
2.5
1.5
0.5 |

| N TN N T T |

500000

300000

| | | |

100000

|
L
I

10.00
6.00
2.00

| N Y (N S -

File Request La'tency
Il T I 1
I

0.10
0.06
0.02

— e e mmm -

T T T T T
| | — | —

| | II 1
200 400 600 800

Time (s)

1000 1200 1400 1600

o

Thumbnails Files Requests Thumbnails
Only Both Only Both Only

Kweb Throughput and Latency
Mixing File Requests and Thumbnail Generation

B Linux NPTL W upthread

BN upthread-lithe

Thumbnail Request Thro

ughput
|

© 3.5

T

T

| N TN N T T |

=Vl |
'g,\ 0.5 H | | . 1 1 I
-] I R |
o 500000 | , File ?’?\euestl Th r?uglhput , |
= - !
; I

w0
b
n
g
o 300000
Q
4

100000

| | | |

NPTL Latency Increase —>

| N Y (N S -

v 6.00
|
> 200 ! | _ 1 ;
S I File Request Latency :
J‘_Ul 0.10 i I I 1 Il T I 1 Il 1 |
- - I I I .
0.06 | R
0.02 : | .
0 200 400 600 800 1000 1200 1400
Time (s)
Thumbnails Files Requests i
Both q Both Thumbnails

Only

Only

Only

1600

96

Kweb Throughput and Latency
Mixing File Requests and Thumbnail Generation

BN Linux NPTL W upthread BN upthread-lithe

Lithe Thumbnail Request Throughput
T Il T | T '

Throughput
Constant

| N TN N T T |

500000

| 1 | |

w0
o+t
n
g
o 300000
Q
4

100000

Lithe 10.00
Latency ——80

Constant 2.00 ,

| N Y (N S -

|
s ; File Request La'tency :
J‘_Ul 0.10 i T I 1 Il 1 I 1 Il 1 |
— - | | | 1
0.06 |]
0.02} , : |
0 200 400 600 800 1000 1200 1400 1600
Time (s)
Thumbnails Files Requests Thumbnails

Only Both Only Both Only

Go

Go

 We have a port of the Go programming language that
runs on Akaros

* Porting Go to Akaros provides a fast path to getting
real-world, production apps running on Akaros fast

Go

We have a port of the Go programming language that
runs on Akaros

Porting Go to Akaros provides a fast path to getting
real-world, production apps running on Akaros fast
Leverages CGo

— Allows us to call arbitrary C code from Go

— Hook parlib underneath the Go runtime

— Lauch parlib-based pthreads to act as “m-threads”

Go

Linux Current Akaros Future Akaros

Application Application Application

Go Runtime Go Runtime Go Runtime

S35 353

= 2 2 2

: :_,;pzhread‘s I

Operating System Operating System Operating System

AODE HOHE CEOEE

Porting Effort

Lots of engineering effort to get it working

Drove many bug fixes / developments in Akaros itself
Took around 1.5 years to complete

Passes full Go test suite

go test std

Total 2412
Passed | 2261
Skipped | 151
Failed 0

Ported and running on Go 1.3

regression tests

Total 290
Passed 290
Failed 0

Poised for inclusion as supported OS in Go 1.6

Not yet at full integration (i.e. native parlib support),
but getting closer, and good enough for inclusion

Work in Progress

* Gointegration with Lithe
— Works on Akaros out of the box

— Still need to properly integrate asynchronous syscalls and
synchronization primitives on Linux

— Imagine efficiently calling MKL code from within Go!

* Native parlib support
— Stop running on parlib-based pthreads library
— Reimplement Go scheduler itself on top of parlib
— Many complications with this
— Read my dissertation to find out more!

Thank You!

* Dissertation Committee
— Eric Brewer — Chair / Advisor
— Krste Asanovic
— Brian Carver
— David Wessel

 Barret Rhoden, David Zhu, Andrew Waterman, Ben
Hindman, Steve Hofmyer, Eric Roman, Costin lancu, Ron
Minnich, Andrew Gallatin, Kevin Kissel, Keith Randall,
Russ Cox, and many others

Thank You!

* Dissertation Committee
— Eric Brewer — Chair / Advisor
— Krste Asanovic
— Brian Carver
— David Wessel
 Barret Rhoden, David Zhu, Andrew Waterman, Ben
Hindman, Steve Hofmyer, Eric Roman, Costin lancu, Ron

Minnich, Andrew Gallatin, Kevin Kissel, Keith Randall,
Russ Cox, and many others

e Last but not least, Amy Bryce
(for putting up with me through this whole process)

Conclusion

Conclusion

* Akaros targeted at data center applications
* Managing Cores in these applications is important

Conclusion

* Akaros targeted at data center applications
* Managing Cores in these applications is important

* Using Akaros and its MCP container, applications
request cores, not threads from the OS

Conclusion

Akaros targeted at data center applications
Managing Cores in these applications is important

Using Akaros and its MCP container, applications
request cores, not threads from the OS

Cores can be provisioned, allocated, and revoked

Conclusion

Akaros targeted at data center applications
Managing Cores in these applications is important

Using Akaros and its MCP container, applications
request cores, not threads from the OS

Cores can be provisioned, allocated, and revoked

Parlib provides user-level scheduling framework on
top of Akaros’s core management interfaces

Conclusion

Akaros targeted at data center applications
Managing Cores in these applications is important

Using Akaros and its MCP container, applications
request cores, not threads from the OS

Cores can be provisioned, allocated, and revoked

Parlib provides user-level scheduling framework on
top of Akaros’s core management interfaces

Lithe provides extension to Parlib for composability

Conclusion

Akaros targeted at data center applications
Managing Cores in these applications is important

Using Akaros and its MCP container, applications
request cores, not threads from the OS

Cores can be provisioned, allocated, and revoked

Parlib provides user-level scheduling framework on
top of Akaros’s core management interfaces

Lithe provides extension to Parlib for composability

Porting Go to Akaros provides a fast path to getting
real-world, production apps running on Akaros fast

Questions? @

mplab/|

Google

