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Overview

e We assert that:

— Parallel applications can benefit from the
ability to explicitly control their thread
scheduling policies in user-space

—More importantly, they should have direct
access to cores and the ability to manage
those cores as they see fit



Overview

e We assert that:

— Parallel applications can benefit from the
ability to explicitly control their thread
scheduling policies in user-space

—More importantly, they should have direct
access to cores and the ability to manage
those cores as they see fit

* Current systems lack support for these
capabilities 2 We attempt to remedy that



Overview

e OS Support (Akaros)

— For direct access to cores

* Runtime Support (Parlib)

— For developing user-level schedulers on top of those cores
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Overview

e OS Support (Akaros)
— New, experimental OS we developed
— The “"Many-Core Process”’ (MCP)
— APIs for dedicated access to cores (vcores)
— Decoupled user/kernel threading model

* Runtime Support (Parlib)
— User-level framework for parallel runtime development

— Focus on application-directed core management and
user-level threading abstractions (vcores / uthreads)

— Canonical parlib-based pthreads implementation
— Ports for both Akaros and Linux (with limited support)
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e Lithe (Pan et al. 2010)

— Framework for composing multiple parallel runtimes in a
single application

— Structured sharing of cores between schedulers
— Notion of a parallel” function call

* My contributions
— Complete rewrite of Lithe to sit on top of Parlib
— Cleaner APIs, more complete implementation
— Generalization of a common " fork-join”” scheduler
— Stable ports of TBB, OpenMP and now pthreads
— Runs on both Linux and Akaros :
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Overview

e Port of Go to Akaros

— Gois an open-source language from Google designed for
building highly concurrent systems

— Has its own form of user-level scheduling (goroutines)

— Initial port built on parlib-based pthread implementation
— Took 1.5 years to complete

— Drove massive amounts of innovation in Akaros

@@@
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Agenda

Motivation (a.k.a. why are we doing all this?)
Managing Cores in Akaros

Parlib Overview and Evaluation

Lithe Overview and Evaluation

Experience porting Go to Akaros

Summary



Resurgence of Parallelism

10,000,000
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Intel CPU Trends :
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Resurgence of Parallelism

* Large-scale SMP machines are on the rise
— What do we do with all these stinkin’ cores?

* Parallelism is not new; can learn from the past
— Large body of work spanning several decades

* The largest machines will be in data centers
— Important enough to warrant engineering effort at
all levels of the software stack



Low Latency vs. Batch Workloads

Low-Latency Batch
Job Job
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« Low-Latency Jobs
— Long periods of inactivity - Bursts of high demand
« Batch Jobs
— “Run-to-completion” model, no strict latency requirements
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Low Latency vs. Batch Workloads

Search Data Analytics
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« Low-Latency Jobs
— Long periods of inactivity - Bursts of high demand
« Batch Jobs
— “Run-to-completion” model, no strict latency requirements
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Data Center Provisioning

"Every year, we take the busiest minute of
the busiest hour of the busiest day and build
capacity on that”

— Scott Gulbransen, a spokesman for Intuit

http://news.cnet.com/TurboTax-e-filing-woes-draw-customer-ire/2100-1038 3-6177341.html



Data Center Provisioning

e Current solutions based on static allocation of resources to
individual jobs (done by cluster manager)

* Great for batch jobs! Crappy for low-latency ones ...
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Data Center Provisioning

e Current solutions based on static allocation of resources to
individual jobs (done by cluster manager)

* Great for batch jobs! Crappy for low-latency ones ...

* Low-latency jobs must be allocated all resources up-front for
peak-demand = wastes resources when not actively used

* More resources? > global reshuffling of resources by cluster
manager, killing batch jobs, etc.

Good News: Akaros core management abstractions help to
alleviate some of these problems

Bad News: Individual pieces work, but not yet integrated into to
a fully usable system. We are working on it!
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Managing Cores in Akaros

 The Many-Core Process
A single, unified abstraction for a parallel process

Request cores from the OS, not threads

All 1/0 completely asynchronous = process retains its cores at all times

Any application-level “threading” is implemented in user-space,

completely decoupled from the kernel

User-Level User-Level

Scheduler Scheduler

OS Scheduler
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Managing Cores in Akaros

 The Many-Core Process

A single, unified abstraction for a parallel process
Request cores from the OS, not threads
All 1/0 completely asynchronous = process retains its cores at all times

Any application-level “threading” is implemented in user-space,
completely decoupled from the kernel

All cores gang scheduled by the kernel to increase performance of
user-level locks/barriers

No cores interrupted or preempted without prior agreement

User-Level User-Level

Scheduler Scheduler

OS Scheduler
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Managing Cores in Akaros

 The Many-Core Process

— Gives developers more control over what runs where (and
when), so they can design their algorithms to take full
advantage of the parallelism available to them.

— Express parallelism via core requests and concurrency via
user-level threads.

User-Level User-Level

Scheduler Scheduler

OS Scheduler

25
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Managing Cores in Akaros

The Many-Core Process

— Experiments show that MCP cores have an order of
magnitude less noise and fewer periodic signals than Linux

— Less interference = better CPU isolation
— Details in the FTQ section of Barret Rhoden’s dissertation
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Managing Cores in Akaros

* Extended API for Provisioning Cores
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Managing Cores in Akaros

* Extended API for Provisioning Cores

— Separate notions of allocation and provisioning
— Low-latency jobs provision cores for future use (at peak-demand)
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Managing Cores in Akaros

* Extended API for Provisioning Cores
— Separate notions of allocation and provisioning
— Low-latency jobs provision cores for future use (at peak-demand)
— Only request the number of cores necessary for real-time demand
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Managing Cores in Akaros

Extended API for Provisioning Cores

— Separate notions of allocation and provisioning

— Low-latency jobs provision cores for future use (at peak-demand)
— Only request the number of cores necessary for real-time demand
— Batch jobs use remaining cores in the meantime
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Managing Cores in Akaros

Extended API for Provisioning Cores

— Separate notions of allocation and provisioning

— Low-latency jobs provision cores for future use (at peak-demand)
— Only request the number of cores necessary for real-time demand
— Batch jobs use remaining cores in the meantime

— Revoke cores from batch jobs to meet increased real-time demand of low-
latency jobs (but don’t kill them unless absolutely necessary!)
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Managing Cores in Akaros

* Extended API for Provisioning Cores

Separate notions of allocation and provisioning

Low-latency jobs provision cores for future use (at peak-demand)
Only request the number of cores necessary for real-time demand
Batch jobs use remaining cores in the meantime

Revoke cores from batch jobs to meet increased real-time demand of low-
latency jobs (but don’t kill them unless absolutely necessary!)

Experiments showing this in action can be found chapter 7 of Barret
Rhoden’s dissertation 4
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Integration with Cluster Manager

* Grand Vision (not yet implemented anywhere!):
— Partition jobs by type (Low-Latency, Batch)
— Provision for Low-Latency = Allocate for Batch
— Schedule and run batch jobs as before

— Schedule low-latency jobs on same resources, and let
provisioning take care of the rest
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Integration with Cluster Manager

* Assuming we have a system like this
— Individual jobs need to take control of their cores!
— Request cores as they need them, release them as they don’t
— Mutliplex user-level threads on top of them
— This is where Parlib, Lithe, and Go come in ....

Low-Latency

Job




Traditional Threading Models Used
for User-Level Scheduling

e 1:1 — User tells kernel what to schedule where/when
— Mach and recent Linux switchto extensions
* M:N — Multiplex user-threads onto kernel-threads
— Psyche, Scheduler Activations and Capriccio
* How to deal with Blocking 1/0?
— Delegate or Activation spawned as notification
— Don’t! = Make all I/0 non-blocking

* Akaros/Parlib follows a combination of these approaches



Akaros Threading Model

* Decouple threading models in Kernel and
User-Space

— Kernel doesn’t know about user threads
— User doesn’t know about kernel threads
— Transition context between the two: vcore context

* Enabled by:

— Ability to request cores, not threads from the
underlying OS

— Fully asynchronous system call interface



Parlib

 Framework for building user-level schedulers under
the Akaros threading model (written in C)

* Developers use parlib to build application-specific
schedulers, customized to their own particular needs.
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* Developers use parlib to build application-specific
schedulers, customized to their own particular needs.

* For legacy applications (or those that don’t care as
much about their scheduling), we provide a parlib-
based implementation of pthreads that is API
compatible with the Linux NPTL



Parlib

Framework for building user-level schedulers under
the Akaros threading model (written in C)

Developers use parlib to build application-specific
schedulers, customized to their own particular needs.

For legacy applications (or those that don’t care as
much about their scheduling), we provide a parlib-
based implementation of pthreads that is API
compatible with the Linux NPTL

Supplement to glibc, which is also supported on
Akaros (c, c++, libgomp)

Limited port of parlib to Linux



Parlib Overview
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Parlib Abstractions

Thread Support Library
Asynchronous Services
Asynchronous Event Delivery Mechanism

Other Abstractions



Parlib Abstractions

Thread Support Library
— Vcores, uthreads, and synchronization primitives

Asynchronous Services
— Syscalls, Alarms, POSIX Signal Delivery

Asynchronous Event Delivery Mechanism
— Active Messages triggered by events from async services

Other Abstractions
— Wait Free List, Slab Allocator, Dynamic Thread Local Storage



Parlib API

e Bi-directional API

Parallel Runtime — Library Calls
User-level implemented by
abstraction itself
- — Callbacks
vcore API Syscalls implemented by
uthread API Alarms consumer of that
Sync PrJ.mJ.tJ.vesEVent ADT POSIX Signals abstraction

Thread Support Asynchronous
Library Services
Other
Abstractions




Parlib API

e Bi-directional API

Parallel Runtime — Library Calls
User-level implemented by
abstraction itself
- — Callbacks
vcore API Syscalls implemented by
uthread API Alarms consumer of that
Sync PrJ.mJ.tJ.vesEVent ADT POSIX Signals abstraction

e Library Calls initiate

Thread Support Asynchronous .

e (Callbacks run

Other
scheduler code, or

respond to external
events




Uthread Context vs. Vcore Context

* Vcore Context
— a.k.a. scheduler context

— Transition context popped into whenever the kernel hands
a core to user space (first time coming up, notification, etc.)

— Has own stack, register state, and thread local storage (TLS)
— Serves to handle events, run scheduler code, etc.



Uthread Context vs. Vcore Context

* Vcore Context
— a.k.a. scheduler context

— Transition context popped into whenever the kernel hands
a core to user space (first time coming up, notification, etc.)

— Has own stack, register state, and thread local storage (TLS)
— Serves to handle events, run scheduler code, etc.

— Always entered at the top of the stack and never returns
(no need to save its context upon exiting)

— Only options in vcore context are to find a uthread to run,
or yield the vcore back to the system

— User-space counterpart to interrupt context in the kernel



Uthread Context vs. Vcore Context

* Uthread Context
— Normally what we think of as a thread context
— Serves to run application code inside a thread
— Transitions to vcore context to make scheduling decisions



Uthread Context vs. Vcore Context

uthread context vcore context

"\

function() {
uthread_yield(callback);;E

I ~., callback(uthread) ({
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run_uthread(uthread);
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Uthread Context vs. Vcore Context

uthread context vcore context

"\

function
() A Always start at top of stack

uthread yield(callback); in fresh context!
I ~., callback(uthread) ({
: run uthread(uthread);

v
-“‘



Events and Async Services



Events and Async Services

* Event Delivery follows producer/consumer model
— Vcores set up queues for event delivery (consumers)
— Async services post events to those queues (producers)

— Consumers register handlers based on event type to be triggered when
event extracted from queue

— Events carry payloads specific to event type
— Think active messages
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Consumers register handlers based on event type to be triggered when
event extracted from queue

Events carry payloads specific to event type
Think active messages

e Optional notification when event posted to queue

Post event = Interrupt uthread - Run vcore entry ()



Events and Async Services

* Event Delivery follows producer/consumer model
— Vcores set up queues for event delivery (consumers)
— Async services post events to those queues (producers)

— Consumers register handlers based on event type to be triggered when
event extracted from queue

— Events carry payloads specific to event type
— Think active messages

e Optional notification when event posted to queue

— Post event = Interrupt uthread = Run vcore entry ()

void vcore entry() {
handlé:events();
if (current uthread)
run_current uthread();
sched ops->sched entry(); // should not return
vcore yield();




Example: Syscall Completion

* Intercept syscalls, and block thread in user-
space on I/O operation

* Notify process and unblock thread after syscall
completion event



Example: Syscall Completion

Syscall Service void akaros_syscall (args...) {

Scheduler Implementation event_queue[max vcores()];
ev_handlers[EV_SYSCALL] = handle_syscall;

void handle syscall (event t* e) ({




Example: Syscall Completion

Syscall Service

First, issue syscall ...

Scheduler Implementation

void akaros syscall(args...) {
struct-gyscall syscall;
syscall.args = args;
do_syscall(&syscall); // always returns

event queue[max vcores()];
ev_handlers[EV_SYSCALL] = handle_syscall;

void handle syscall (event t* e) ({




Example: Syscall Completion

Syscall Service

First, issue syscall ...
If not done
* Yield to vcore context
e Save uthread reference
* Set up event queue
e Set to notify

Scheduler Implementation

void akaros syscall(args...) {
struct-gyscall syscall;
syscall.args = args;
do_syscall(&syscall); // always returns
if ( !syscall.done ) {
uthread yield(callback, syscall);

}
void callback (uthread, syscall) ({

syscall->uthread = uthread;
syscall->evq = event queue[vcore id()];
syscall->notify = true;

event queue[max vcores()];
ev_handlers[EV_SYSCALL] = handle_syscall;

void handle syscall (event t* e) ({




Example: Syscall Completion

Syscall Service

e First, issue syscall ...
* If not done
* Yield to vcore context
e Save uthread reference
* Set up event queue
e Set to notify

Scheduler Implementation

* Grap syscall from payload

e Grab uthread reference

* Make thread runnable again
* sched_entry() implicit

void akaros syscall(args...) {
struct-gyscall syscall;
syscall.args = args;
do_syscall(&syscall); // always returns
if ( !syscall.done ) {

uthread yield(callback, syscall);
}

void callback (uthread, syscall) ({
syscall->uthread = uthread;

syscall->evq = event queue[vcore id()];

syscall->notify = true;

event queue[max vcores()];
ev_handlers[EV_SYSCALL] = handle_syscall;

void handle syscall (event t* e) ({
syscall = (struct syscall*)e.payload;
uthread = syscall->uthread;
uthread runnable (uthread) ;




Parlib-based Pthreads

Per-vcore run queues with rudimentary stealing algorithm
Extended API for setting scheduling period based on alarms

Integration with high-level sync primitives for mutex,
barrier, condition variables, and futexes

Integration with the Async Syscall service
Rudimentary affinity algorithm for preferred vcore queues

Careful cache alignment of all data structures (per vcore
data and thread struct data interfere minimally)



Parlib on Linux

Port of parlib to Linux (including pthread library)

Fakes vcore abstraction and has limited support for
asynchronous syscalls

So long as only 1 application running, good enough for
experiments = more fair comparison to Linux NPTL
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— Context Switch Overhead

— Flexibility in scheduling policies
— NAS Benchmarks (OpenMP)

— Kweb throughput



Parlib on Linux

Port of parlib to Linux (including pthread library)

Fakes vcore abstraction and has limited support for
asynchronous syscalls

So long as only 1 application running, good enough for
experiments = more fair comparison to Linux NPTL

Experiments
— Context Switch Overhead

— Kweb throughput



Parlib Experiments

 Machine Specs (c99):
— 2 lvy Bridge, 8-core 2.6Ghz CPUs (16 cores, 32 hyperthreads)
— 8 16GB DDR3 1600Mhz DIMMs (128GB total)
— 4 Intel i350 1GbE interfaces
— 1 1TB Hard Disk Drive
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Parlib Experiments

 Machine Specs (c99):
— 2 lvy Bridge, 8-core 2.6Ghz CPUs (16 cores, 32 hyperthreads)
— 8 16GB DDR3 1600Mhz DIMMs (128GB total)
— 4 Intel i350 1GbE interfaces
— 1 1TB Hard Disk Drive

* 3.13.0-32-generic kernel with patches from Andi Kleen
to enable the rdfsbase and wrfsbase instructions
(for user-level TLS support)
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Millions of Context Switches / Second
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Parlib Experiments
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Lithe

* Proposed to solve the problem of software
composability between parallel libraries
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Lithe

* Proposed to solve the problem of software
composability between parallel libraries

— Can cause inefficiencies if libraries all launch threads and
compete in the OS for scheduling

— Exacerbated when libraries use barriers for synchronization
— Lithe = structures sharing of cores
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Lithe

* Proposed to solve the problem of software
composability between parallel libraries

— Can cause inefficiencies if libraries all launch threads and
compete in the OS for scheduling

— Exacerbated when libraries use barriers for synchronization
— Lithe = structures sharing of cores
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* Originally proposed in the
Parlab by Pan et. al. in 2010

* All work presented here is an
extension of this previous work




Lithe on Parlib

* Although not originally proposed as such, Lithe fits
nicely as an extension to Parlib’s user-level scheduling
framework
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framework
— Where Parlib only allows for a single user-level scheduler

— Lithe allows for many, creating hierarchy of schedulers as new
ones are added and removed dynamically



Lithe on Parlib

* Although not originally proposed as such, Lithe fits
nicely as an extension to Parlib’s user-level scheduling
framework

— Where Parlib only allows for a single user-level scheduler
— Lithe allows for many, creating hierarchy of schedulers as new
ones are added and removed dynamically
* Solves problems not addressed in original version

— No async services in original (especially important for syscalls)

— Cleaned up interfaces, and better usage semantics in the new
version (e.g. vcore context for callbacks)

— New generic fork-join”’ scheduler implemention
— New port of pthreads to Lithe



Lithe Interposing on Parlib

Parallel Runtime

User-level
Scheduler

Parallel Runtime

1.

User-level
Scheduler
vcore API Syscalls
uthread API Alarms
Sync Primitives POSIX Signals
l Event API l
Thread Support Asynchronous
Library Services
Parlib

Hart API
Context API
Scheduler API
Sync Primitives

Lithe

T

vcore API
uthread APT
Sync Primitives

Event API

Syscalls
Alarms
POSIX Signals

!

Thread Support
Library

{

Asynchronous
Services

Parlib




Lithe Interposing on Parlib

* Harts == Vcores
e Contexts == Uthreads Parallel Runtime
* Scheduler API == extension of Parlib’s User-level
Scheduler
Hart API
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l Event API l l Event API l
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Parlib Parlib
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Parallel Function Calls

 Like parlib, also based on library calls / callbacks API

* Adds primitives for dynamically adding / removing
schedulers as parallel function” calls are made

void parallel function() {
Enter Scheduler —> lithe sched enter (new sched());

for (int 1 = 0; 1 < num contexts; 1++)
Spawn / Enqueue ctx = context alloc();
—> add to scheduler queue (sched, ctx);

Contexts

}
Request More Cores =—> lithe hart request(num contexts);

Wait For all Contexts ——>» join on all contexts();
Exit Scheduler ——>» lithe sched exit();
}

{
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Lithe API

Library Call Callback
Hart Management é lithe_hart_request(amt) | parent->hart_request(amt)

. . parent->hart_return()
lithe-hart.yield() parent->hart_enter()

lithe_hart_grant(child) | child->hart_enter()

Scheduler Management

Library Call Callback
lithe_sched_init(sched, callbacks, main_ctx) -
Scheduler Management é 1ithe_sched_enter(child) parent->child_enter(child)

child->sched_enter()
parent->child_exit(child)
child->sched_exit()
lithe_sched_current() -

lithe_sched_exit()

Context Management

Library Call Callback

lithe_context_init(ctx, entry_func, arg) -

lithe_context_reinit(ctx, entry_func, arg) -

lithe_context_recycle(ctx, entry_func, arg) -

lithe_context_reassociate(ctx, sched) -

lithe_context_cleanup(ctx) -

lithe_context_run(ctx) -
Context Management é lithe_context_self()

current_scheduler->context_block(ctx)
lithe_context_block(callback, arg) callback(ctx, arg)
current_scheduler->hart_enter()

current_scheduler->context_unblock(ctx)

Lithe context.unblock (ctx) current_scheduler->hart_enter()

current_scheduler->context_yield(ctx)

lithe context.yield() current_scheduler->hart_enter()

current_scheduler->context_exit(ctx)

lithe_context_exit
O current_scheduler->hart_enter()
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* Ports exist for
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Lithe Ports and Experiments

* Ports exist for
— OpenMP
— TBB (Intel’s Thread Building Blocks Library)
— Pthreads

* All ports based on a common Fork-Join”” scheduler

* Experiments
— SPQR Benchmark
— Kweb File Throughput and Thumbnail Generation



SPQR Benchmark
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(Tim Davis, Univ of Florida)
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SPQR Benchmark

\
Give resources to OpenMIP
y
/ / \ Give resources to TBB
© 00 O O © O _

92



Time (sec)

Performance of SPQR with Lithe
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Operating System
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Throughput
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Latency (s)

Kweb Throughput and Latency
Mixing File Requests and Thumbnail Generation
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Kweb Throughput and Latency
Mixing File Requests and Thumbnail Generation
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Kweb Throughput and Latency
Mixing File Requests and Thumbnail Generation

BN Linux NPTL W upthread BN upthread-lithe
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 We have a port of the Go programming language that
runs on Akaros

* Porting Go to Akaros provides a fast path to getting
real-world, production apps running on Akaros fast



Go

We have a port of the Go programming language that
runs on Akaros

Porting Go to Akaros provides a fast path to getting
real-world, production apps running on Akaros fast
Leverages CGo

— Allows us to call arbitrary C code from Go

— Hook parlib underneath the Go runtime

— Lauch parlib-based pthreads to act as “m-threads”
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Porting Effort

Lots of engineering effort to get it working

Drove many bug fixes / developments in Akaros itself
Took around 1.5 years to complete

Passes full Go test suite

go test std

Total 2412
Passed | 2261
Skipped | 151
Failed 0

Ported and running on Go 1.3

regression tests

Total 290
Passed 290
Failed 0

Poised for inclusion as supported OS in Go 1.6

Not yet at full integration (i.e. native parlib support),
but getting closer, and good enough for inclusion



Work in Progress

* Gointegration with Lithe
— Works on Akaros out of the box

— Still need to properly integrate asynchronous syscalls and
synchronization primitives on Linux

— Imagine efficiently calling MKL code from within Go!

* Native parlib support
— Stop running on parlib-based pthreads library
— Reimplement Go scheduler itself on top of parlib
— Many complications with this
— Read my dissertation to find out more!
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Conclusion

Akaros targeted at data center applications
Managing Cores in these applications is important

Using Akaros and its MCP container, applications
request cores, not threads from the OS

Cores can be provisioned, allocated, and revoked

Parlib provides user-level scheduling framework on
top of Akaros’s core management interfaces

Lithe provides extension to Parlib for composability

Porting Go to Akaros provides a fast path to getting
real-world, production apps running on Akaros fast
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