
eScholarship provides open access, scholarly publishing
services to the University of California and delivers a dynamic
research platform to scholars worldwide.

Electronic Thesis and Dissertations
UC Berkeley

Peer Reviewed

Title:
Operating System Support for Parallel Processes

Author:
Rhoden, Barret

Acceptance Date:
2014

Series:
UC Berkeley Electronic Theses and Dissertations

Degree:
Ph.D., Computer ScienceUC Berkeley

Advisor(s):
Brewer, Eric

Committee:
Asanović, Krste, Culler, David, Chuang, John

Permalink:
http://escholarship.org/uc/item/8gt545mj

Abstract:

Copyright Information:
All rights reserved unless otherwise indicated. Contact the author or original publisher for any
necessary permissions. eScholarship is not the copyright owner for deposited works. Learn more
at http://www.escholarship.org/help_copyright.html#reuse

http://escholarship.org
http://escholarship.org
http://escholarship.org
http://escholarship.org
http://escholarship.org/uc/ucb_etd
http://escholarship.org/uc/ucb
http://escholarship.org/uc/search?creator=Rhoden, Barret
http://escholarship.org/uc/ucb_etd
http://escholarship.org/uc/search?department=Computer Science
http://escholarship.org/uc/search?affiliation=UC Berkeley
http://escholarship.org/uc/search?advisor=Brewer, Eric
http://escholarship.org/uc/search?cmteMember=Asanović, Krste
http://escholarship.org/uc/search?cmteMember=Culler, David
http://escholarship.org/uc/search?cmteMember=Chuang, John
http://escholarship.org/uc/item/8gt545mj
http://www.escholarship.org/help_copyright.html#reuse

Operating System Support for Parallel Processes

by

Barret Joseph Rhoden

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Eric Brewer, Chair
Professor Krste Asanović
Professor David Culler
Professor John Chuang

Fall 2014

Operating System Support for Parallel Processes

Copyright 2014
by

Barret Joseph Rhoden

1

Abstract

Operating System Support for Parallel Processes

by

Barret Joseph Rhoden

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Eric Brewer, Chair

High-performance, parallel programs want uninterrupted access to physical resources.
This characterization is true not only for traditional scientific computing, but also for high-
priority data center applications that run on parallel processors. These applications require
high, predictable performance and low latency, and they are important enough to warrant
engineering effort at all levels of the software stack. Given the recent resurgence of interest
in parallel computing as well as the increasing importance of data center applications, what
changes can we make to operating system abstractions to support parallel programs?

Akaros is a research operating system designed for single-node, large-scale SMP and
many-core architectures. The primary feature of Akaros is a new process abstraction called
the “Many-Core Process” (MCP) that embodies transparency, application control of physical
resources, and performance isolation. The MCP is built on the idea of separating cores
from threads: the operating system grants spatially partitioned cores to the MCP, and the
application schedules its threads on those cores. Data centers typically have a mix of high-
priority applications and background batch jobs, where the demands of the high-priority
application can change over time. For this reason, an important part of Akaros is the
provisioning, allocation, and preemption of resources, and the MCP must be able to handle
having a resource revoked at any moment.

In this work, I describe the MCP abstraction and the salient details of Akaros. I discuss
how the kernel and user-level libraries work together to give an application control over its
physical resources and to adapt to the revocation of cores at any time — even when the
code is holding locks. I show an order of magnitude less interference for the MCP compared
to Linux, more resilience to the loss of cores for an HPC application, and how a customized
user-level scheduler can increase the performance of a simple webserver.

i

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1

2 Background on Operating Systems 4
2.1 System Calls . 4
2.2 Threads, Concurrency, and Parallelism . 7
2.3 Scheduling and Competition . 20
2.4 Synchronization . 27
2.5 Performance Isolation . 30

3 The Basics of the Many-Core Process and Akaros 34
3.1 MCP Basics . 34
3.2 Akaros Details . 36

4 Life for a Many-Core Process 48
4.1 Procinfo and Procdata . 48
4.2 Virtual Cores . 49
4.3 MCPs from Creation to Entry . 52
4.4 User-level Scheduling . 57
4.5 Impact of Dedicated Cores . 70

5 Event Delivery 88
5.1 Concurrent Queues for Payloads . 89
5.2 The Event Delivery Subsystem . 100
5.3 Never Miss an Important Event . 108

6 Virtual Core Preemption 116
6.1 Preemption Basics . 118

ii

6.2 Preemption Detection and Recovery Locks 123
6.3 Handling Preemption . 141

7 Applications 149
7.1 Fluidanimate . 149
7.2 Webserver . 151

8 Conclusion 160

Bibliography 162

iii

List of Figures

4.1 FTQ Raw Output, c89, Linux, Core 7 . 71
4.2 FFT @ 3000 Hz, c89, Linux, Core 7 . 72
4.3 FFT @ 500 Hz, c89, Linux, Core 7 . 72
4.4 FFT @ 100 Hz, c89, Linux, Core 7 . 73
4.5 FFT @ 100 Hz, c89, Old Akaros, Core 7 . 74
4.6 FFT @ 100 Hz, c89, Akaros, Core 7 . 75
4.7 FFT @ 500 Hz, c89, Akaros, Core 7 . 75
4.8 FFT @ 3000 Hz, c89, Akaros, Core 7 . 76
4.9 FFT @ 3000 Hz, c89, Linux, Core 31 . 77
4.10 FFT @ 3000 Hz, c89, Akaros, Core 31 . 77
4.11 FFT @ 500 Hz, c89, Linux, Core 31 . 78
4.12 FFT @ 500 Hz, c89, Akaros, Core 31 . 78
4.13 FFT @ 100 Hz, c89, Linux, Core 31 . 79
4.14 FFT @ 100 Hz, c89, Akaros, Core 31 . 79
4.15 FTQ Raw Data, c89, Akaros, Core 7 . 80
4.16 FTQ Raw Data, c89, Akaros, Core 31 . 81
4.17 FFT @ 3000 Hz, hossin, Linux, Core 7 . 82
4.18 FFT @ 3000 Hz, hossin, Akaros, Core 7 . 82
4.19 FFT @ 500 Hz, hossin, Linux, Core 7 . 83
4.20 FFT @ 500 Hz, hossin, Akaros, Core 7 . 83
4.21 FFT @ 100 Hz, hossin, Linux, Core 7 . 84
4.22 FFT @ 100 Hz, hossin, Akaros, Core 7 . 84
4.23 FTQ Raw Data, hossin, Akaros, Core 7 . 85
4.24 FTQ Raw Data, hossin, Linux, Core 7 . 86

6.1 Akaros Spinlocks, 4 Threads, Acquisition Latency 135
6.2 Linux Spinlocks, 31 Threads, Acquisition Times 135
6.3 MCS locks, 31 Threads, Acquisition Times . 137
6.4 Akaros, Basic MCS locks, 31 Threads, Lock Throughput 138
6.5 Akaros, MCS-PDRO locks, 31 Threads, Lock Throughput 138
6.6 Akaros, MCS-PDRN locks, 31 Threads, Lock Throughput 139

iv

7.1 Fluidanimate, Akaros, 64 Threads, 31 Cores . 151
7.2 Fluidanimate Performance on Akaros and Linux with Preemption 152
7.3 Fluidanimate Relative Performance on Akaros and Linux with Preemption . . . 152
7.4 Akaros Kweb, Custom-2LS, Throughput vs. Workers 156
7.5 Kweb and Fluidanimate Throughput with Preemption 158

v

List of Tables

4.1 Average Thread Context-Switch Latency (nsec) 68
4.2 Akaros Context-Switch Latency (nsec) . 69

6.1 Spinlock Acquisition Latency (in ticks) . 134
6.2 MCS Lock Acquisition Latency (in ticks) . 136

7.1 Fluidanimate Runtime (seconds) . 150
7.2 Kweb Throughput, 100 connections of 100,000 calls each 154

vi

Acknowledgments

I have been extremely fortunate over the past seven years. Not only did I have the oppor-
tunity to pursue a project I found interesting, but I did so while working with excellent
people.

Both my research opportunity and the group environment are the product of my advisor:
Eric Brewer. I would like to thank Eric for his inspiration and guidance — especially his
implicit guidance as a role model. Although research is important, it is less important than
a work-life balance and being “safe in your own skin.” Eric gave me the breathing room
necessary to work on Akaros and allowed me to “do the right thing,” even if it took longer.

I would also like to thank my committee, especially David Culler, for providing a much-
needed historical perspective for my work. Additionally, David Wessel’s music application
was the original inspiration for the separation of provisioning and allocation in Akaros.

The bulk of my time was spent with other graduate students and developers, and my
work would not have been possible without them. Kevin Klues has been my partner in crime
for a number of years now. It’s hard to believe that the end of our era in Berkeley is finally
here. David Zhu and I have had discussions since our first semester here together. Andrew
Waterman is an impressive coder who tends to know what I am thinking before I say it. Paul
Pearce developed Akaros’s initial network drivers, and Andrew Gallatin vastly improved the
more recent Plan 9 network stack. I would be lucky to work with any of them in the future.

Ron Minnich and I met in 2009, but we did not work together until our serendipitous
pairing as host and intern at Google in 2013. He was instrumental both in porting the guts
of Plan 9 to Akaros and in using FTQ. Ron breathed new life into Akaros, greatly increasing
its chances of having a life beyond graduate school. More importantly, Ron is the real deal
— authentic and generous, and I hope to be more like him.

My family has been very supportive over the years. They have always provided a home
in Pittsburgh, complete with nieces and nephews, for whenever I was in town and needed to
relax.

Finally, I would like to thank my wife, Tamara Broderick. Not only did she help with
FTQ and R, but she has been my biggest supporter. Whether it was coining the name
“Akaros” or designing giraffe-themed merchandise, she has always been there for me, and I
look forward to returning the favor.

1

Chapter 1

Introduction

There are limitations to what we can do with computers. System designers make trade-offs,
and over time certain designs should be reevaluated — especially when there is a change
in the landscape of computing. One such change is the resurgence of interest in parallel
computing due to the industry’s failure to increase uniprocessor performance[5]. Given this
environment, what changes can we make to operating systems to support parallel programs?

Researchers and engineers have pursued parallel computing for decades. The existence
of parallel computers is not new, although their ubiquity is on the rise. Another trend in
computing is the creation of large-scale clusters of computers in data centers. The largest
parallel machines are likely to be found in data centers. Any work on parallel computing
ought to address data centers and their workloads, as well as the more traditional concerns
of parallel applications.

Typically, high-performance, parallel programs are tuned and want uninterrupted access
to resources; after all, the purpose of parallelism is to speed up an application. Certain data
center applications also fit this description. Data center workloads tend to be a mix of low-
latency, high-priority applications and batch, time-insensitive background applications[13].
Application latency is extremely important. For instance, Google found that a half second
of latency in a search result lead to 20% less page views[64]. These low-latency applications
are highly tuned, want uninterrupted access to resources, and usually require multiple cores:
a modern parallel application.

One example of a high-performance, data center application is TritonSort. Rasmussen et
al. fine-tuned a set of machines to efficiently execute a custom sorting algorithm, performing
60% better than the previous winner of the Indy GraySort sorting benchmark with only 1/6
the number of nodes[89]. Their competitive edge was in-depth knowledge of and access to
the systems resources, which they carefully balanced to avoid bottlenecks.

Li et al. analyzed sources of tail latency within the data center, identifying certain op-
timizations and design choices that are independent of specific applications. Some of these
design choices are spatially allocating dedicated cores to jobs, dedicating cores for interrupt
processing, and using a “thread-per-connection” model[57]. Not only do low-latency appli-
cations require tuning and dedicated access to resources, but they also benefit from tinkering

CHAPTER 1. INTRODUCTION 2

in the classic areas of parallelism — namely the management of cores and threads. These
highly tuned, low-latency parallel application would benefit from customized operating sys-
tem interfaces and subsystems.

An important aspect of data center workloads is the background jobs. Data centers
provision for the peak load of the high-priority application. For instance, an Intuit spokesman
famously said, “Every year, we take the busiest minute of the busiest hour of the busiest
day and build capacity on that”[66]. When actual utilization is low, low-priority batch jobs
take up the slack[13]. Unlike with classic time-sharing machines, we do not run multiple
applications on a machine for fairness or for multi-tasking, but to maintain the utilization
of a purchased resource.

For operating systems, there are two important details about the mix of data center work-
loads: multi-tenancy and variations in utilization. Not only are there multiple applications,
but the resource allocations will change over time in response to changes in the workload of
the high-priority application. It is not enough to simply allocate an entire machine to an
application; due to changing resource requirements, those allocations may change over time
and there may be multiple applications.

Historically, changing the resource allocation for competing, parallel applications on a
machine can be tricky. When the application has control over dedicated resources, it also
has the responsibility to manage those resources. It can be hard for the application to
handle the revocation of those resources by the operating system. The operating system
preempted those resources to allocate them to the high-priority application, but we still
want the low-priority application to continue with its reduced set of resources.

In this work, I will present operating system abstractions to support high-performance,
parallel applications. This work is done in the context of Akaros, a research operating system
designed for single-node, large-scale SMP and many-core architectures. The primary feature
of Akaros is a new process abstraction called the “Many-Core Process” (MCP). The MCP
embodies transparency, application control of physical resources, and performance isolation.
The defining feature of the MCP is the separation of cores from threads: the operating system
grants spatially partitioned cores to the MCP, and the application schedules its threads on
those cores. In this manner, an application has fine-grained control over its resources. An
important part of the MCP is that there can be more than one of them in the operating
system. Not only are they capable of managing dedicated resources, but the application can
handle the preemption of those resources, even at very inopportune times.

This work is organized as follows.

• In Chapter 2, I provide background on the history of operating systems and how they
dealt with threads, parallelism, and competing applications.

• In Chapter 3, I introduce the MCP and discuss the basics of Akaros, including the
kernel scheduler’s distinction between provisioning and allocating resources. This dis-
tinction is the central mechanism for supporting the mix of low-latency and batch
workloads common in data centers, and provides applications coarse-grained control
over its resources.

CHAPTER 1. INTRODUCTION 3

• In Chapter 4, I go into more detail on the MCP, describing the life of an MCP from
both the kernel and the user’s perspective. I outline how the system handles tradi-
tionally difficult situations caused by page faults and blocking system calls. I present
microbenchmarks showing fast user-level threading and an order of magnitude less
interference for an MCP’s core on Akaros than for a dedicated process on Linux.

• Chapter 5 covers the event delivery system, whereby the kernel and the user work
together to ensure applications never miss messages — a critically important service
to enable applications to manage their cores. Although the event delivery system is
particular to Akaros, its low-level data structures such as the Unbounded Concurrent
Queue can be used by any shared-memory operating system.

• In Chapter 6, I describe how the kernel preempts cores and how the application recovers
from losing its cores in any situation. The difficulty of preemption recovery comes
from the application losing its tools mid-recovery; it is hard when the core running
the recoverer is revoked. Similarly, preempted cores could have been running code
holding locks. I present a class of locking algorithms called Preemption Detection and
Recovery locks that avoid deadlock and compare the performance of PDR locks to more
traditional locking methods.

• In Chapter 7, I analyze the performance of two parallel applications on Akaros: a tra-
ditional compute-bound task and a simple webserver. I show how parallel applications
on Akaros can be resilient to preemption and how a customized user-level scheduler can
improve performance. For instance, a simple webserver on Akaros with a customized
scheduler can slightly outperform the same webserver on Linux, despite Akaros’s im-
mature network stack. Finally, I show a high-priority webserver with dynamic resource
requirements running alongside a low-priority background job, and the entire system
handles the preemption and reallocation of cores.

4

Chapter 2

Background on Operating Systems

At the most basic level, the role of an operating system is to provide an environment for
the execution of a user’s programs. It manages hardware, often in the form of device initial-
ization and access. It provides abstractions for accessing hardware, including memory, and
bootstraps process execution. In many systems, it protects processes from one another and
multiplexes resources among them.

Alan Bawden from MIT’s Incompatible Time Sharing (ITS) operating system said:

The basic job of any time-sharing operating system is to share a single processor
among a set of independent processes[8].

In that regard, the basic job of any shared, parallel operating system is to share a single
multiprocessor among a set of independent, parallel processes.

To fully understand the changes I propose for operating systems to support parallel
processes, we need to look back at the design decisions of operating systems over the years.
How do programs make requests of the operating system, especially requests that might
complete asynchronously? What are the process abstractions presented to programmers,
especially related to parallelism and concurrency? How does the operating system deal with
multiple competing parallel applications, where a process might not have the entire machine?
Parallel program performance is sensitive to interference; how do operating systems try to
maximize these applications’ performance?

2.1 System Calls

Operating systems provide a variety of methods to service user requests, called syscalls. The
details of this kernel interface has many implications on the performance and programmabil-
ity of all programs. The trade-offs in this space have revolved around a few points: avoiding
syscall mechanism overheads, exploiting cache locality and avoiding context-switch interfer-
ence, and dealing with the asynchronous nature of devices and events.

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 5

The two main components to a syscall are the request message and the control transfer
mechanism to the kernel. The details of the message Application Binary Interface (ABI) are
rather trivial: certain arguments are placed in certain registers, or there is a specific layout
in memory of the arguments. How the message is delivered depends on the nature of the
control transfer. For many systems, a user program makes a hardware-assisted procedure
call into the operating system via a trap. Call Gates between rings of privilege of this sort
have been in use for decades, since Multics[95]. The details may have changed, such as how
x86 platforms have the syscall instruction for fast transfers from Ring 3 (lower privilege)
to Ring 0 (higher privilege), but the essence is the same.

Most operating systems today are either Windows or based on Unix (e.g. Linux, the
BSDs, OS X), and employ a trap-based syscall mechanism. In recent years, researchers
have experimented with other approaches to getting syscall messages to the kernel, taking
advantage of multicore processors. Instead of trapping into the kernel, which is an expensive
operation, an application can place a syscall message in shared memory and the kernel can
run a syscall handler on another physical core. Instead of transferring control of the current
processor, which is a form of time-sharing with the kernel, running a syscall on a remote
core is a form of space-sharing.

For example, Kumar et al.[50] employed a similar mechanism for virtual machine monitors
(VMMs) and coined it “sidecore”. Ring transfers from guest VMs to VMMs on x86 platforms
are even more expensive than regular syscalls, hence their motivation. Soares and Stumm
implemented an asynchronous syscall interface in Linux, based on shared memory regions,
in FlexSC[99]. An application could trap on the local processor to transfer control, or
kernel threads could run remotely in the sidecore style. Their motivation was avoiding
control-transfer overheads and to exploit cache locality by minimizing context switches.
FlexSC syscalls could run on a remote core or locally, where local syscalls amortize the
trap overhead by batching numerous syscalls together. The AsyMOS[77] dedicated cores to
devices, designed for network processing. They were less concerned with avoiding control
transfer overheads than with utilizing multiprocessors for TCP processing. At the time, off-
loading TCP to network cards with specialized processors was popular, and the ideas behind
AsyMOS would eventually be part of the “TCP onload” discussion[90]. On a humorous note,
depending on when you are reading this, either TCP offload or onload may be more popular;
this was described to me by a networking professional who had been around for a while as
the offloading “Circle of Karma”. Brecht et al. developed a network processing architecture
called ETA-AIO (Embedded Transport Acceleration with Asynchronous I/O))[12]. The
“ETA” was the dedicated “sidecore”, and the AIO was a set of APIs for posting syscalls and
receiving completion events.

Although remote syscalls on “sidecores” have been gaining popularity as multiprocessors
become prevalent, remote syscalls are much older. Back in the 1960s, the Control Data
6600[107] had remote “cores” for I/O and system control, which was in essence their system
calls. All control and I/O were performed on ten peripheral processors around a central,
more powerful processor. They would typically run the main OS on one peripheral and run
device drivers on the others. Their motivation was to keep the central CPU and its FPU free

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 6

from interference from the peripheral devices. This is analogous to modern systems using
remote cores for syscalls to increase performance by exploiting cache locality of the user and
kernel programs and avoiding context-switching interference.

Remote syscalls have some performance benefits at the expense of complexity and load
balancing issues. A single syscall-processing core can become a bottleneck under load and
can be a waste when under-utilized. Dynamically adjusting these cores may incur latency
penalties. The correct choice is workload dependent, and ideally an operating system could
support either approach.

Regardless of whether remote or local syscalls are a better approach for a given workload,
a larger issue is that of asynchrony: what do operating systems do when syscalls block,
such as on a disk read or a network operation? Performance lost due to cache misses
and trap overheads are orders of magnitude smaller than the waiting time for many I/O
operations, and that time could be spent by the application performing other computations.
The application might not have more work to do, but the operating system does not know.
The real issue is one of control: if an application loses access to the CPU because of issuing
a blocking syscall, its performance will suffer needlessly.

Most operating systems, even those on single-core processors, need to deal with block-
ing syscalls. The obvious answer for many systems is to have asynchronous options on
their syscalls to avoid blocking, and then allow programs to request an event or poll for
completion. For instance, POSIX sockets can set the O NONBLOCK option, and if a socket
operation would block, the kernel returns an error code. Then, applications can use syscalls
such as epoll() or the older select() to poll if file descriptors are available for I/O and
optionally block until they are available. Likewise, the POSIX standard has a set of AIO
calls, such as aio read(), that perform operations similar to their synchronous counter-
parts (e.g. read()). Unfortunately, these interfaces are clunky at best: a program needs to
know if it working with a socket file descriptor or a file-system file descriptor to perform its
asynchronous I/O. Furthermore, certain operations do not have non-blocking variants; for
example, there is no aio open().

Although asynchronous I/O options in recent OSs tend to be bolted on to existing inter-
faces, asynchronous I/O interfaces are much older. Digital Equipment Corporation’s (DEC)
VAX/VMS system, first introduced in the late 1970s[79], had a QIO syscall, which queues
an I/O command to a particular device[38]. Applications can later wait on the completion
or even receive an interrupt or signal called an Asynchronous System Trap[31]. Nearly a
decade earlier, the Livermore Time-Sharing System, which ran on the CDC 7600, also had
asynchronous I/O calls. A user could wait until I/O completed or receive interrupts on com-
pletion or errors[102]. These early developers were merely dealing with the asynchronous
nature of devices and events, and exposed that model to their programmers. Fundamentally,
they did not want programs to lose access to a processor merely because an I/O operation
blocked.

If operating systems had suitable asynchronous I/O decades ago, why then do we have
lousy AIO interfaces today? The answer is due in part to the threading model; multiple
synchronous threads can hide the latency and asynchrony of underlying hardware events. The

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 7

programmability and overhead of using multiple processes or threads determines the relative
importance of asynchronous I/O interfaces. McJones and Swart, from DEC’s Topaz system,
believed fast threads are a replacement for the “ad hoc” multiplexing techniques common to
AIO: polling, waiting, and interrupting[67]. With slower threads and heavyweight processes
for I/O, programmers will want lighter-weight AIO services. There is a design choice between
asynchronous and synchronous kernel interfaces, but to understand the choice more we will
need more background on how operating systems deal with threads and concurrency.

2.2 Threads, Concurrency, and Parallelism

Threads, at their most basic level, are independent streams of instructions within a program.
Threads belonging to the same process execute in the process’s address space, and they
share file descriptors and other process state. Catanzaro[15] outlined many benefits to using
threads.

• Hardware parallelism: a single program with threads can easily utilize multiple pro-
cessors.

• I/O throughput: each thread can be used for distinct, blocking, I/O operations, allow-
ing multiple outstanding I/Os and computation during I/Os.

• Efficiency: threads require less memory than full processes.

• Programming ease: threads make programming asynchronous actions easy.

Yet, as we shall see, the specific benefits of threads depend on the details of the threading
model and vary from system to system. To fully understand threads, let us step back and
review the original notion of a single-threaded process and explore how threads evolved over
the years.

In traditional processes, there is only one thread, and it is simply the code that executes
a series of functions, e.g. int main(), on a stack whose memory is readable and writable by
the process in user mode. The functions eventually make system calls or otherwise trap into
the kernel, and the kernel executes functions, e.g. sys read(), on behalf of the user. When
the code switches into the kernel, the hardware or the kernel software changes to another
stack: one that is neither readable nor writable by the user. The original registers and
context from the user program are saved and restored, subject to some interface rules. The
registers and other aspects of the context of code executing in the kernel is independent of
the user’s context. This separate stack and context is the kernel thread, sometimes phrased
as the “process executing in kernel” or the “kernel executing in process context”, as opposed
to interrupt handler (IRQ) context. For each process, the kernel maintains a thread control
block and both the user and kernel stacks. There is no distinction between user threads and
kernel threads: there is only one thread, visible to the kernel, which can execute in either

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 8

in the kernel or in userspace. Parallel applications were built by spawning several of these
processes, which communicated with some form of IPC, such as shared memory.

When discussing threading models, an important distinction to make is the one between
parallelism and concurrency. Parallelism is rather simply defined as sequences of instructions
executing at the same time, e.g. two threads running on two separate processors simulta-
neously. I view concurrency in two different ways, depending on the programming scenario.
When attempting to exploit concurrency for performance, concurrency is merely the number
of independent tasks in a program or system, e.g. one task per connection in a webserver.
When programming defensively, concurrency refers to any possible interleaving of instruction
streams, even those that do not occur simultaneously. For example, on a single processor,
context-switched tasks are concurrent, and kernel code and interrupt handlers are concur-
rent. David Black, who worked on Mach, tackled this distinction by defining application
parallelism as the actual execution in parallel achieved by a program, while application con-
currency is the amount of parallel execution achievable given infinite processors[11]. Black’s
view of application concurrency matches my exploitative view on concurrency. The inter-
leaving view of concurrency is more closely matched by Ed Lee’s view: the next state of the
system is determined by the next atomic action of either concurrent thread[55]. In either
view, parallelism is a subset of concurrency.

Threads provide a convenient way of dealing with both aspects of concurrency. They are
an easy-to-use, relatively lightweight abstraction for exploiting both processor and device
parallelism. They neatly encapsulate state (e.g. per-thread variables and stacks), which re-
duces the amount of interleavings a programmer needs to track. Private state helps program-
mers reason about concurrency by ignoring operations on non-global variables: interleaved
operations on independent, private state can be treated as no-ops on global state.

Of course, threads need to communicate with each other, and there are a variety of tools
that provide synchronized access. One notable tool is the monitor, which is a shared-memory,
software module that encapsulates all aspects of sharing: synchronization, the shared data,
and the code that accesses the data[34, 40]. When programmers use monitors or similar
tools with threads, programmers can effectively partition their concurrency concerns from
thread-local processing. Put another way, when designing a program, it is best to start with
threads operating on private state, and to use synchronization tools to protect access to any
necessary global state.

The Early Days of Threading

Monitors are a useful tool, and it is no surprise that the development of monitors as a
language construct went hand-in-hand with the earliest languages and systems that used
threads. One of the earliest languages with support for monitors was Concurrent Pascal[35].
Soon after, Xerox developed the language Mesa[53] in the 1970s, which was used for the Pilot
OS, its applications, and other projects. Mesa was designed for Pilot, to some extent, and was
driven by the need to support varying amounts of inexpensive processes. These processes
were “lightweight” processes, sharing the same address space: a thread. Complementing

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 9

monitors, Mesa also had language primitives for spawning processes: fork and join. Mesa
was superceded by Cedar[52, 104], and its ideas lived on in many languages, including Java.
In more recent times, the Go language and runtime[106] has first-class support for threading
and synchronization. Instead of monitors, Go uses channels and mutexes for synchronization,
and it can spawn a thread with the keyword go.

The successor to the Cedar model of threads was Digital Equipment Corporation’s (DEC)
Topaz system in the 1980s[105, 67]. At that time, Unix-like systems, such as Mach[1] and
Sun were adding on multithreaded capabilities. Topaz was a mix of Unix and Cedar: Cedar
threads ran in a BSD 4.2-like environment, where processes could utilize either interface[67].
For synchronization, the system provided semaphores, condition variables, and mutexes,
inspired by Hoare[40] and Mesa monitors. Topaz was the overall system, which included both
the Taos kernel and a userspace component. There were two Topaz implementations, one
native to the Firefly multiprocessor[105] and the other on Ultrix, DEC’s Unix variant based
on BSD 4.2[109]. In either implementation, there are two types of processes (called address
spaces in Topaz): a legacy mode capable of running Ultrix binaries in a single-threaded
manner and a Topaz mode that extends the Ultrix mode with the ability to support multiple
threads[105]. The purpose of these multiple threads was not merely to exploit hardware
parallelism. Existing Unix processes could coordinate and share memory, but these are
loosely coupled and expensive. Topaz’s threads are tightly coupled, within a single program,
and are designed for light-weight control for use in Mesa-inspired synchronization[67].

The importance of Topaz was that it not only brought multithreading to the Unix world,
as others had done, but that it merged the two worlds of Unix and Cedar and attempted
to improve the former with the latter. There are many single-threaded assumptions built
into the Unix interface that need to be either redesigned or carefully avoided. For instance,
the error variable errno was classically process-wide. One solution would be to make it per-
thread; Topaz opted to use exceptions instead. Care must be taken when calling chdir(),
since it affects the entire process. Similarly, seek() affects all users of a file descriptor (FD).
In both cases, Topaz parameterized the system calls using paths or FDs to take a thread-
local parameter, e.g. an open() call took a directory handle and an fread() call took a file
position pointer[67].

Unfortunately, many of their changes never impacted the current Unix interface, as em-
bodied in Linux. One such deficiency is the Unix assumption about file descriptors being
given out in a particular order, which is used during process creation. As someone who also
attempts to bring lightweight threading to the modern POSIX community, I found their
comments about this poor design both humorous and disheartening: nearly 30 years later I
had a bug related to that very assumption. Other changes have been picked up or indepen-
dently developed. Notably, Topaz did not fork() processes as in the Unix fork-exec model.
It is unclear how to treat multiple threads during a fork(). Instead, Topaz’s StartProcess
method took parameters, such as which open file descriptors to pass to the child, with which
one could achieve the semantics of the fork-exec model[67]. The V Distributed System[17],
from the same era as Topaz, also did not fork(), and Go wisely did not build a fork() call
into its runtime.

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 10

Topaz was one system exploring the nature of multithreading in the 1980s, but there
were others and their collective development led to different models of threading. Mach’s[1]
designed kernel-based multithreading because Unix processes were expensive, but also to
spread the existing user-level threading to multiple processors. In Mach terms, an overall
process or Topaz address space was called a task. The V system also had multiple threads
in an address space. V threads were called processes, and the collection of threads into an
address space was called a team[17]. All of these early threading systems, Mach, V, Topaz,
even Mesa/Cedar used kernel threads, i.e. threads managed by the kernel. In contrast,
there existed user-level concurrency/threading packages, which multiplexed lightweight, user
threads on top of a single kernel thread, unbeknownst to the kernel. User-level concurrency
goes as far back as the early 1960s with coroutines[18], and has existed in various packages
throughout the years, such as Green Threads in Java[46]. At this point in history, there
existed two models of threading, user and kernel, and the stage was ripe for a third.

Threading Models

There are three well-known models of threading, with the prevailing trait being the relation-
ship between user threads and kernel threads. In all cases, all of the threads run in the same
address space.

• Many-to-One (M:1): Many user threads running on one kernel thread. These are
threads that operate cooperatively, but on top of a single kernel task/process, and
are scheduled by the application. This is the model still used today in some language
runtime virtual machines, as well as in Capriccio[9] back in the early 2000s.

• One-to-One (1:1): Multiple pairs of one user thread running on one kernel thread.
They are lighter-weight than running multiple, full-fledged kernel processes. This is
the model used by Cedar, Topaz, Mach, V, and many modern OSs today, such as Linux
and BSD.

• Many-to-Many (M:N): Many user threads running on many kernel threads. The user
threads are scheduled by the application, and the kernel threads are scheduled by the
kernel. This model was popularized in the early 1990s by Scheduler Activations[2]
and Sun’s Lightweight Processes (LWPs)[15], and is used today in the Go language
runtime[106].

The M:1 threading model is built on a traditional single-threaded process, where M
threads are multiplexed on the single kernel thread. The kernel is unaware of the M threads;
from its perspective, there is only one thread in the process. In general, the kernel is only
ever aware of its own threads. The M threads are in userspace, where userspace manages
their stacks, control blocks, and scheduling. The benefits of having userspace manage its
threads are:

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 11

• Faster thread operations: context switches and synchronization do not require switch-
ing into the kernel.

• Minimal features per thread: not all applications need all features provided by kernel
threads, such as thread-local storage (TLS) and signals.

• Less memory consumed per thread: there is no need for a kernel stack, and userspace
can use customized, smaller stacks for its own threads.

• Applications can decide which thread runs, instead of the operating system.

The downsides to M:1 threading are due to the process having only one kernel thread:

• When one of the user threads makes a blocking call, such as write(), the underlying
kernel thread blocks. Since the kernel thread is blocked, userspace cannot run any other
user threads. The common way to deal with this is some form of asynchronous I/O,
which leads to the complex, ad-hoc, programming techniques frowned on by McJones
and Swart[67].

• Page faults cause the entire program to halt while the faults are serviced. Programmers
can pin or lock virtual memory to prevent page faults, but this is expensive and limits
the ability to perform memory-mapped I/O.

• The single kernel thread, and thus all M user threads, can only run on one processor
at a time and is ill-suited to SMP systems.

Capriccio[9] was a relatively recent M:1 threading system from 2003, designed for scal-
able web services using a thread-per-request model. Capriccio interposed on the common
I/O calls, such as read(), replacing them with wrappers around Linux asynchronous I/O
calls. Asynchronous calls alleviated the major concern of M:1 threading: system calls no
longer result in the entire program halting, and Capriccio hid the complexity behind the
threading library. Additionally, Capriccio developed a linked-stacks technique whereby each
thread only used a small amount of stack space at a time, increasing the stack space on
demand[9]. Capriccio threads required less resources and had faster context switches than
traditional kernel threads, all multiplexed on one kernel thread. Although Capriccio’s use of
asynchronous I/O alleviated one limitation of M:1 threading, it still suffered from the others,
especially its inability to use multiple processors.

By comparison, 1:1 threading models are very simple: they are merely a collection of tra-
ditional kernel threads that share the same address space and other process-wide structures,
such as the file descriptor table. The benefits of the 1:1 model are the benefits of kernel
threading:

• I/O concurrency: since the kernel knows about threads, each thread can page fault or
block on I/O independently. This allows multiple concurrent I/Os.

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 12

• Hardware parallelism: each kernel thread can run on a different processor.

Kernel threads in any threading model are used for both I/O concurrency and parallelism.
One issue with this dual purpose of kernel threads is determining how many kernel threads to
create, given a number of processors and a workload. Too many threads is wasteful and can
result in inter-thread interference. Too few threads will fail to utilize all of the processors.
The common practice for determining the number of threads to use in the 1:1 model is to
use heuristics such as “the number of processors plus two”.

By the early 1990s, the benefits of both kernel threads and user threads were known, and
three independent projects developed the M:N threading model that combines the benefits
of the M:1 and the 1:1 models. In the M:N model, userspace maintains M threads on top of a
collection of N kernel threads. A blocking operation on one kernel thread does not block all of
the threads. The M:N model can exploit I/O concurrency and hardware parallelism, like in
the 1:1 model. User thread context switches and synchronization are fast, and the userspace
picks which threads run, like in the M:1 model. M:N threading models were developed by
Sun’s Lightweight Processes (LWPs)[15], Scheduler Activations[2], and Psyche[61].

SunOS Multithreading Architecture

As part of the Solaris operating environment, version 2.2, Sun supported an M:N threading
model called the SunOS Multithreading Architecture[15]. Applications were programmed
using user threads with an API similar to POSIX threads, with extended features to control
the underlying kernel threads. The kernel threads were called Lightweight Processes (LWPs),
and the environment was an extension to Unix SVR4. The threading architecture included
the user-level runtime that scheduled the user threads on the LWPs and controlled the
number of LWPs in the system. When user threads run, they are associated with a particular
running LWP, which the kernel scheduled on a particular processor. Any blocking calls or
page faults are handled by the underlying LWP.

The Solaris Threads library had a few features for controlling the relationship between
user threads and LWPs, as well as the number of LWPs in the system. In general, user
threads were scheduled based on priority, just like processes in Unix. However, application
programmers could bind user threads to dedicated LWPs for higher performance, and the
threads library could ask the kernel to bind an LWP to a processor[15]. Binding threads to
LWPs is similar to pinning virtual memory to physical memory: high performance, but at a
cost in developer time and potentially wasted resources.

As with other M:N system, Solaris’s LWPs exist to gain the benefits of kernel threads:
I/O concurrency and hardware parallelism. To that end, there were mechanisms to ensure
there were enough LWPs to satisfy the application. When all LWPs are blocked in the
kernel, the kernel would send a SIGWAITING signal to the application. If there were more
user threads than LWPs, the runtime would have installed a SIGWAITING handler, so that
the runtime would know it has more work to do and request new LWPs. Additionally, the
application could call thr set concurrency(), which instructs the runtime to maintain a

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 13

set amount of LWPs. The amount of concurrency is actually both the I/O concurrency and
the hardware parallelism; equivalent to the old heuristics used in 1:1 threading. If there
are more LWPs than user threads, the runtime would park the LWPs on a synchronization
variable and eventually free them over time[15].

Fundamentally, Solaris Threads wanted more than to just merge the benefits of kernel
threads and user threads. They wanted programs to not lose access to a processor merely
because an I/O operation blocked. Hence the SIGWAITING and thr set concurrency()

features, to ensure there are enough LWPs, given the programmer picked the correct value for
concurrency. A relatively minor enhancement that may or may not have made it into future
versions of Solaris Threads would be to have the runtime always handle SIGWAITING and
have the kernel always send SIGWAITING when any LWP blocked. Another issue Solaris
Threads did not address is what they do if there are more LWPs than processors granted
by the operating system. Applications could request the binding of an LWP to a processor,
but otherwise the application and runtime were blind to the actual scheduling of LWPs.
When LWPs are oversubscribed, the kernel time-slices the kernel threads, which inherently
determines which user thread runs. It fell on another M:N system, Scheduler Activations,
to explore this issue further.

Scheduler Activations

Scheduler Activations[2] was another M:N system that merged the best of kernel and user
threading. Unlike LWPs, which evolved from the Unix world, Scheduler Activations came
from the Topaz world. The first implementation ran on the Firefly, and the system was
built on slight modifications to Topaz’s kernel threads. More important than being an M:N
system, they tried to change the processing abstraction. Anderson et al. argued that kernel
threads were not the correct abstraction, and that applications should be given a virtual
multiprocessor. To that end, programs were aware of how many physical cores they were
granted and were able to control what ran on its cores. The vehicle for running user code on
processor or core was called the scheduler activation, which is roughly analogous to a kernel
thread. It is important to note that the use of something very similar to kernel threads
is not inconsistent with the opinion that kernel threads are not the correct abstraction.
Normally, kernel threads block and resume without notifying applications, and they are
scheduled without the application’s knowledge[2]. Scheduler activations are kernel threads
without those limitations, similar to what could be done with LWPs with some modifications,
including more types of signals.

A scheduler activation is actually both a kernel thread, for the execution of user threads
and syscalls, and a vehicle for event delivery[2]. There were two major aspects to this work:
one is the exposing of events relevant to scheduling, and the other is the mechanism for
delivering these events. Generic event delivery works like so:

1. User threads are bound to activations (i.e. kernel threads) when they run.

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 14

2. When the kernel needs to deliver an event, it picks a core running the address space
(i.e. process) and stops the activation running on that core.

3. The kernel allocates a new activation, preferably from a pool of recently used activa-
tions for better performance.

4. Both the original event and the extra, stopped activation’s context are bundled into
an event payload, which is attached to the freshly allocated activation.

5. The new activation starts at the runtime entry point and processes the event and
handles the previously stopped activation.

A common event is triggered when a kernel thread blocks on a syscall in the kernel or
when a user thread page faults. In this case, the kernel picks the current core in Step 2,
and the event payload does not have an extra, stopped activation; there is just the “blocked
activation” event.

The scheduling events are limited to a small set of events relevant to scheduling. These
events were designed such that the kernel can maintain a basic invariant critical to the virtual
multiprocessor abstraction: there are always exactly as many running activations as their
are processors allocated to the process[2].

• New processor: no event, the runtime is starting fresh on a processor.

• Activation has blocked: event payload is the activation ID, no context needed.

• Activation has unblocked: event payload is the ID of the unblocked activation and the
context of the previously running activation.

• Activation has been preempted: event payload is the ID and the context of the pre-
empted activation.

Of special note, when an activation unblocks in the kernel and the system call is complete,
the kernel sends an event in lieu of blindly restarting the kernel thread[2]. Solaris threads,
by contrast, would restart the LWP. By letting userspace control the unblocking of a system
call, the Scheduler Activations kernel both avoids oversubscribing activations on processors
and allows the application to pick which thread runs on which core. Any other alternative
would require the kernel to choose which activation to run, e.g. time-slicing, and there is no
guarantee the kernel would make a good choice.

For every event delivered to the user-level runtime, the kernel allocates an activation,
and this activation is the running kernel thread until the next event. Once the application
has processed the payload, it must tell the kernel the activation is free. In the case of an
unblocked activation, the runtime extracts the user thread’s context and eventually tells the
kernel the original activation can be reused. The application can release old activations in a
batch. Additionally, userspace can make explicit requests to change its processor allocation,
either to acquire more or yield existing processors[2].

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 15

Scheduler activation event delivery is elegant, but it also has many drawbacks. The
limited nature of events is a minor annoyance and one that can easily be extended. However,
userspace has no control over the manner of event delivery. For instance, the kernel interrupts
a processor to send an event: polling is not an option. Given that activations are the vehicle
for event delivery, it is unclear how polling could ever be an option. Furthermore, the
kernel picks the processor to interrupt; userspace has no way to communicate its preferences.
Imagine a process running on a single core and the kernel sends a stream of “unblock” events:
the first event will spawn a fresh activation with the event and a reference to the previous
activation. The second event will spawn another activation with the second event and a
reference to the activation processing the first event, and so forth. All events are treated the
same, are unmaskable, and chain together. An application cannot mask interrupts and poll
for events, such as many kernel networking subsystems do. Finally, each event requires the
allocation, even if from a pool, of a full activation, an interrupt, and the saving/restoring of
a hardware context.

Events can occur at any time, including during critical sections. Scheduler Activations
has various techniques to detect and recover from preempted critical sections, discussed
further in Section 2.4. The basic idea is that when an event payload’s “previously running
activation” was in a critical section, the runtime immediately restarts that context in such
a manner that at the end of the critical section, that context switches back to the event
handler[2]. Although this suffices for many circumstances, it does not prevent all deadlocks,
which I show below. At a more basic level, the entire event handling part of the runtime is
considered a critical section.

These issues with event delivery and handling of critical sections are rooted in a more
fundamental issue. One hint at this problem is from the previous paragraph; the event han-
dling runtime is a critical section, as it should be, but it should be more. Although Scheduler
Activations was correct in providing a virtual multiprocessor abstraction, its drawback was
in using a collection of arbitrary kernel threads to create the abstraction. Scheduler Activa-
tions lacks a formal virtual core abstraction to build the virtual multiprocessor abstraction.
As a basic example, how could a user-level scheduler use per-core runqueues? What does
that even mean in the Scheduler Activations world; are we talking about hardware cores,
numbered based on the number of cores in the computer? If the runtime uses per-physical-
core runqueues, what happens when those cores are allocated to other processes, and the
activations migrated somewhere else in the system? More importantly, a virtual core ab-
straction, with appropriate rules and code, could serve as a layer of indirection in which
events can be masked, handled, and redirected. Further, a virtual core only needs to be
created once per physical core in the system, and events could require only modest amounts
of memory.

Psyche

A virtual processor abstraction similar to what I describe was first developed as part of
the Psyche Parallel Operating System, which was also developed in the early 1990s, and

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 16

ran on the BBN Butterfly Plus[61]. The primary feature of Psyche’s virtual processor was
its software interrupt handling, which was designed to mirror the operations of interrupts
in hardware. When the kernel wanted to send an event, it looked up a software interrupt
descriptor table in the user’s memory. If software interrupts were unmasked, the kernel would
perform the software interrupt by pushing the existing context onto the user’s interrupt stack,
pushing some event-specific information, and then jumping to the handler, in user mode.
When in an interrupt handler, other software interrupts are disabled; further interrupts are
queued. When a handler completes, it unmasks interrupts and if there are queued interrupts,
userspace makes a syscall asking the kernel to push the next interrupt. Otherwise, the handler
or the user-level runtime can return to the original thread or do whatever the application
wants[61].

It is instructive to compare and contrast the two styles of Scheduler Activations and Psy-
che, both of which are solving similar problems: how to deliver events to userspace. In both
cases, the events are related to the management of user-level scheduling, but the methods of
event delivery differ. Delivering one event is easy; the difficulty lies with determining how
to deliver another event while the first is being handled. Scheduler Activations creates a
chain of event-handling activations, and has little flexibility over how to handle them. All
events are delivered, and a full activation exists for each outstanding event. Psyche masks
new events, and handles them one at a time at the user’s discretion. New events queue in
the kernel, at a smaller cost in memory. Psyche relied on trapping in to the kernel to get its
next event, and did not have a notion of interrupt priority, but that could easily be changed.
Those minor shortcomings are not due to the model of masking software interrupts. One
of the contributions of my work is Akaros’s event delivery system, which allows the user to
handle multiple events at their discretion from within a runtime with a similar notion of
Psyche’s masking of software interrupts. This flexibility is gained by separating the physical
interrupt, i.e. jumping into the runtime, from the event delivery mechanisms. Both Psyche
and Scheduler Activation suffer in this regard; for instance, neither of them allow for the
polling of events. Ultimately, the virtual processor model is lower level and more flexible,
and ultimately may be suitable to build the Scheduler Activations model in much the same
way as how one can build synchronous syscalls on an asynchronous interface.

Psyche had many other relevant features. Of special importance was a shared memory
region for communication between the kernel and user. One section was read-only for the
user, and another was read-write. The read-only section was actually per physical processor,
mapped into the same location in all address spaces. This read-only section consisted of
a few pseudo-registers with information and pointers to structures in the read-write space,
which is where the virtual processor structure was located[61]. The read-write part was
the most important; it provided a way for userspace to asynchronously and quickly pass
information to the kernel. For instance, the interrupt descriptor table and flags for disabling
software interrupts were located in this memory region. The runtime could quickly change
these values without syscalls or otherwise involving the kernel. If, for a period of time, the
kernel did not need the information in the read-write region, it simply does not need to
check; the user merely sets the values such that they are present for whenever the kernel

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 17

happens to look in the future. This was a wide, yet extremely powerful interface.
The shared memory interface was used for more than just communication with the kernel;

it was also a standardized location for specific scheduling data structures. Psyche was de-
signed to work with multiple threading libraries, simultaneously. The shared-memory region
provided function pointers and data structures for common scheduler operations[61]. Even
though the kernel did not need to see this information, it was very convenient. This region
also contained the thread pointer; one of Psyche’s goals was to elevate the user thread to
a first-class status in their system. It is unclear how much the Psyche kernel knew about
a user thread: pointers for identification is convenient, but in my opinion exposing details
of the actual thread structure is excessive. By contrast, Scheduler Activations and Solaris
Threads did not expose information about the user threads to the kernel.

Although Psyche’s virtual processor abstraction was powerful, it had some limitations.
First, it was not part of a larger virtual multiprocessor; the virtual processors were largely
independent. Actually, every virtual processor was pinned to a physical processor, forever.
Multiple virtual processors could exist for a given physical processor, usually from separate
applications. All virtual processors on a physical processor were time-sliced, and they were
not coordinated with other virtual processors in the same address space (process). Although
this setup was beneficial for cache and memory locality (the BBN Butterfly was a NUMA
machine), the lack of virtual processor migration could be problematic. Even more so, by
not coscheduling the virtual processors, spin-based synchronization could suffer.

As with all M:N systems, Psyche needed to deal with the preemption of virtual proces-
sors, including the preemption of lock holders. Their approach was to issue a “two minute
warning”, by which the kernel would set a flag or send an interrupt when a virtual processor
had an impending preemption.The user would poll this flag and would yield. If the warning
is suitably long, this would prevent the application from suffering from an inopportune pre-
emption. The default time for the warning was 3 ms (the two minute warning is a phrase
from football). The 3 ms timeout was on a 16 MHz system; relative to current processor
speeds, the timeout was more like a few microseconds. If a virtual processor failed to yield
to the warning, it would be preempted and would wait until the next time-slice.

This scheduling limitation meant that one could not be both safe from deadlock due to
preemption and fully dedicate cores to processes, dynamically. Avoiding a deadlock in Psyche
requires the time-slicing of a physical processor, which is incompatible with dedicating the
processor. Although it is possible to simply not allow applications to create virtual processors
on specific physical processors in the first place, such a system would not be able to take
advantage of the dynamic resource requirements of parallel programs. It could not safely
allocate a temporarily unused resource, due to being unable to permanently revoke that
resource at a later time.

Ultimately, Psyche did well with the virtual processor abstraction, but would have ben-
efited from a virtual multiprocessor. For Scheduler Activations, the opposite is true.

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 18

Implications of M:N Threading Models

One thing both systems had in common was the ability to perform some sort of asynchronous
system call. In these cases, the critical aspect of asynchrony was that the process did not
stop running on a processor because a thread’s syscall blocked. For Scheduler Activations,
a new activation was created when an old one blocks. For Psyche, a “thread blocked on a
syscall” interrupt was sent to the virtual processor. Both had mechanisms to receive events
when the blocking operation completed. Incidentally, both would have been improved by
providing a polling interface to check for syscall completion.

Earlier, I mentioned that the choice between asynchronous and synchronous kernel in-
terfaces depends on the threading model. For 1:1 models, the standard synchronous system
call interface is appropriate. On the surface, any M:N user-level threading runtime seems to
need some sort of asynchronous system call interface. However, Solaris Threads was M:N,
yet it used a synchronous interface. The distinction is in what the “N” stands for: if it is
N kernel threads, then a synchronous model is fine. If it is N cores, then an asynchronous
model is necessary: a process must not lose access to the core when a syscall or user thread
blocks.

What Happened to M:N Threading Models?

The M:N threading models were not the only approach to parallelism during the early 1990s.
Many systems still used 1:1 threading models. For instance, Mach’s Cthreads package[19]
could support either an M:1 or a 1:1 model, depending on which library was linked.

By the mid-1990s, of all the M:N models, Scheduler Activations became quite popular.
There were implementations for BSD[98], FreeBSD[25], NetBSD[112], and even patches for
Linux[58]. At the same time, Sun continued to support its M:N threading model in Solaris.
Psyche made little noticeable impact with the current operating systems.

However, as the retrofits of Scheduler Activations into existing kernels continued, and as
those kernels improved their kernel threading performance, the M:N model fell out of favor.
FreeBSD phased out support for Kernel-Scheduled Entities (their version of Scheduler Acti-
vations) by 2008[30], and Solaris dropped support in 2002[72]. In both cases, the kernel had
a newer kthread scheduler, and the existing M:N schedulers were more difficult. The Solaris
release was quite explicit that the benefits of the 1:1 model were due to implementation
simplicity and code efficiency. Further, they qualified that:

Again, this is not to say that a good implementation of the MxN model is im-
possible, but simply that a good 1:1 implementation is probably sufficient[72].

Likewise, Ingo Molnar, one of the Linux scheduler developers, had many similar criticisms
when discussing Scheduler Activations in 2002[74]. His takeaway at the time was that if you
can do fast, 1:1 kernel threading, then that is all you need. He cites various concerns with
the complexity of M:N systems in the current kernel, especially a set of issues that result
from having multiple user-level execution contexts on top of a single kernel-level context.

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 19

Ingo mentioned two other things that are important in the broader picture: M:N systems
are workarounds for fixable problems, namely slow kernel context switches, and that M:N
is only necessary for a small set of use cases[74]. The M:N models exploited obvious short-
comings in existing schedulers, but their implementations failed to keep up with the 1:1
implementations. As hardware and operating systems improved drastically, and as large
scale SMPs dwindled in popularity in the desktop and small server node community, the
need for M:N systems dissipated, especially considering the implementation costs. Good 1:1
implementations were sufficient.

The trend in threading models has oscillated between 1:1 and M:N, and M:N is once again
on the rise. We started with full processes, then developed M:1 models. These lacked kernel
support, so we developed 1:1 models. These were too slow for scheduler and synchronization
operations, so we developed M:N models. M:N implementations were complex and too
slow for many use cases, and 1:1 models were improved. Now in more recent times, high-
performance users still want lighter-weight thread operations and the ability to choose which
thread runs:

• The Go language runtime[106] operates in an M:N model where the language threads
(goroutines) are multiplexed on kernel threads.

• Apple’s Grand Central Dispatch (GCD)[45] is a new M:N runtime with very small,
fast user-level threads, multiplexed on a workqueue of kernel managed pthreads[56].

• Microsoft added User-mode Scheduling (UMS) to recent versions of Windows[71, 88].
UMS is an M:N-like model that allows user-level context switching on a collection of
kernel threads.

• Google has developed a runtime for user-controlled thread scheduling[108]. It is a 1:1
model still, but the application determines which threads run. It is a specific case of
the scheduling hints provided by Mach in the 1980s, discussed further in Section 2.3.

M:N threading models may be back, fueled by the resurgence of large-scale SMP and
manycore machines[4], yet any successful approach will need to learn from the lessons of
previous systems. Keep this list in mind, as it directly motivates my work:

• The kernel thread needlessly couples both parallelism and I/O concurrency and should
not be the kernel-provided abstraction. Unfortunately, many M:N models retrofitted
for existing operating systems use N kernel threads, instead of N cores. A virtual
multiprocessor abstraction is key, wherein the available physical cores are exposed to
the application.

• User-level runtimes will manage the blocking of its threads; this requires some form of
asynchronous system calls or upcalls such that control is returned to the user.

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 20

• User-level runtimes will need to handle events, many of which can lead to complicated
scenarios. This requires a flexible software interrupt handling mechanism, similar to
the virtual processor of Psyche.

• Since userspace is involved in the details of managing the system, there is a wide
kernel interface with many rapidly changing parameters. Due to the asynchronous
nature of many of these settings, in that they are “update frequently, read rarely”,
shared-memory regions work well for fast communication.

• Thread-specific details, such as what sort of stack to use, and operations, such as
context switches, need to be in userspace for the highest performance.

2.3 Scheduling and Competition

Ideally, an application would have uninterrupted access to the entire machine. In those
cases where this is not the case, we are forced to schedule and allocate a limited amount
of resources among competing processes. There are a variety of techniques for scheduling
parallel programs, regardless of the choice of threading model, such as coscheduling and
user-level scheduling. M:N models and any system involving user-level scheduling has an
additional problem: how to handle preempted cores. More broadly, resource preemption and
revocation is a concern in any situation with competing applications and either fluctuating
priorities or resource demands.

Coscheduling and Gang Scheduling

One of the earliest techniques in parallel program scheduling in a multiprogrammed system
was based on the idea of giving the entire machine to an application, or at least pretending to
when it matters. Simply put, the scheduler would run all tasks (e.g. processes, threads) for
an application simultaneously. This technique was called coscheduling[81], later called gang
scheduling[28]. The idea behind coscheduling is that it is beneficial to parallel programs to
have all threads of the program that communicate (i.e. the working set) running in parallel.
Note this applies primarily to communicating threads, meaning threads that synchronize
and may wait on one another, or otherwise frequently interact. For instance, if a particular
thread is busy-waiting in a spinlock, then ideally whatever it waits on should be running
simultaneously. Coscheduling draws many parallels with virtual memory management: pro-
cess working sets correspond to memory working sets and both types of allocation can suffer
from internal and external fragmentation. Coscheduling was developed in 1982 as part of
the Medusa OS for the Cm* multiprocessor[103], before threads or virtual multiprocessors
were developed, and its lessons were primarily geared towards processes, but the ideas are
equally applicable. Gang scheduling technically differs slightly from coscheduling in that
there is no fragmentation of the processor space: either the application completely runs, or

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 21

not at all. Coscheduling allowed for and controlled various types of fragmentation, which
can result from any bin-packing allocation scenario.

The virtual multiprocessor abstraction inherently coschedules an application; this is the
essence of Feitelson’s[28] intuition for gang scheduling: to provide an environment similar
to dedicated, multiprocessor hardware. Generic M:N systems, such as Solaris Threads, do
not necessarily coschedule the N threads. Virtual multiprocessor systems, such as Scheduler
Activations, do coschedule the N processors; otherwise a preemption event is delivered to
the process.

Keep in mind that in coscheduling, an application is not necessarily given the entire ma-
chine: it is given only the amount of the machine that it needs. Arguably, it may be given
only its working set for fast communication, but this distinction is not important. In this
manner, coscheduling and gang scheduling are part of a much larger topic of job scheduling
on parallel clusters and distributed systems. Gang scheduling is a form of spatial partition-
ing or space-sharing (as compared to time-sharing), which is quite common in parallel job
scheduling[116, 65]. Space-sharing, simply put, is granting a resource (e.g. a processor) to a
job until the job completes, as compared to periodically reallocating the resource over time.

HPC and Cluster Scheduling

Space-sharing is the norm in job scheduling in parallel clusters, typically used in High-
Performance Computing (HPC). One popular open-source scheduler is Maui[47, 63], now
part of the commercial Moab Cluster Suite. Maui’s documentation[44] presents the basics of
this class of schedulers. Users submit jobs with the estimated amount of resources and time
required, such as “10 processors, 2 GB RAM, 2 hours”. The cluster scheduler prioritizes jobs
based on various parameters and runs the highest priority job first, until it either completes
or runs out of time. For the most part, the cluster is space-shared at any given time.

Of course, when cluster jobs finish or exhaust their large quantum, their resources are re-
allocated to other applications, which seems like time-sharing. The main distinction between
space and time-sharing is one of granularity of the time quanta involved: space sharing just
context switches with large time quanta. Another distinction is that space and time-sharing
differ in their method of achieving the perception of simultaneous execution. Multitasking
and time-sharing are used in interactive or user-facing systems where multiple jobs share a
set of processors. These jobs are time-sliced to give the illusion of simultaneous execution.
In space-sharing, the jobs are actually run simultaneously on separate processors.

Cluster schedulers such as Maui have additional scheduling capabilities. One important
notion is backfilling, which schedules jobs out of order to achieve higher utilization and
throughput while respecting priorities[44]. When the scheduler creates its plan for resource
allocation, inevitably there will be “holes” in the resource allocation. For example, imagine
there are three high-priority jobs requiring ten processors each on a 16 processor machine,
and a set of low-priority jobs that require six processors each. All jobs take one hour. When
the highest priority process is running, there are six cores remaining, which are insufficient
for the next highest priority programs. The scheduler will backfill by scheduling a lower

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 22

priority job, since those processors would be unused regardless. The scheduler was able to
make this decision since it knows how many resources a job requires and and for how long.
Additionally, jobs often finish early, since users over-estimate the resources required; this can
create more “holes” in the job plan. Maui can also be configured to preempt a job, either as
part of a backfill scenario or due to changing priorities. In these cases, a job is completely
suspended, checkpointed, or cancelled and later resumed or restarted[44]. Note that the job
is either completely running or not: there is no partial execution; this is gang scheduling.

These HPC cluster schedulers do so due to the programming model: jobs expect all of
their resources, or they do not run at all. But not all cluster schedulers behave this way.
Many internet businesses run data centers with multiple jobs of different priorities, but these
do not have an “all or nothing” programming approach. For instance, Google classifies many
of its jobs into separate priority tiers: Tier 1 and Tier 2. The Tier 1 jobs have the highest
priority, yet often do not utilize their requested resources. Using HPC parlance, Tier 2 tasks
are backfilled onto these resources, until the Tier 1 job’s load spikes, at which point sufficient
Tier 2 tasks are stopped or killed so that the high-priority Tier 1 job gets the resources it
needs[41, 20]. The distinction between Google’s system and scheduler’s such as Maui is that
the high-priority job does not use all of its resources simultaneously; it is not gang scheduled.
Where a Maui job runs on all of its requested processors, a Google Tier 1 job could run on
less than it requested until an external agent determined it really does need those resources.

Both styles of cluster schedulers attempt to grant otherwise unutilized resources to lower
priority jobs. There are other cluster management systems, so to speak, that did the same
thing. Both Condor[59] and the Network of Workstations[3] (NOW) were clusters of com-
modity systems that allowed work stealing across the system. For instance, in Condor, when
a workstation had no interactive user (i.e., a human at the console), the cluster manager
would schedule part of a job to run on that machine. When a user was detected, the job
was descheduled.

Google’s system, and many others like it, has less fragmentation of resources, i.e. the
“holes” in the Maui scheduler’s plan are a form of external fragmentation, using terms from
coscheduling and memory management. However, the lack of gang scheduling means parallel
processes can suffer from the same sorts of problems that led to coscheduling in the first place:
poor communication performance, among other things. This does not need to be the case.
If we take a closer look at gang scheduling, we see that the reason for running all tasks of
an application is that userspace neither knows what cores it runs on, nor does it have any
control over these details. The important concept is that the program knows which cores are
running at any particular time; gang scheduling does this by default by simply running all or
nothing. One could still have the benefits of the Google-style system, namely less resource
fragmentation, higher utilization, and greater flexibility, but also have the benefits of gang
scheduling by exposing information and scheduling decisions to userspace.

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 23

User-Level Scheduling

Once a process knows which cores it runs on and which threads are running, or at least
which threads they would like to run, the next step is allowing the process to pick which
thread runs. There is a distinction between user-level scheduling and user-level threading.
User-level scheduling is allowing the application to choose what runs. User-level threading
includes user-level scheduling and also has fast and flexible scheduler operations, as discussed
in Section 2.2. Both are often coupled in the same system, especially in the M:N systems,
but this is not necessary. In fact, user-level scheduling existed in 1:1 systems long before
M:N models existed.

Back in the early 1970s, the Hydra OS on the C.mmp multiprocessor[62] had a form of
user-level scheduling. Hydra’s kernel scheduler, called the Kernel Multiprogramming System
(KMPS), had an explicit distinction between long-term scheduling, which was job selection,
from short-term scheduling, which was context-switching among selected jobs. In Hydra,
this was referred to as two-level scheduling, which is a term that frequently is used in user-
level scheduling discussions, although with slightly different meanings, as I will discuss later.
The user-level aspect to scheduling came in the form of policy modules (PMs). PMs were
user-level programs that serves roles in both levels of scheduling. For short-term scheduling,
PMs set process parameters for the kernel scheduler, such as priority, a mask of processors
to run on, and time quantum. Time quantum was slightly different than modern quanta:
Hydra quanta consisted of a value for the time slice, i.e. the amount of time to run, and a
number of slices to run. For long-term scheduling, the PMs provided a stream of processes for
the KMPS to run, and the KMPS made the fine-grained decisions of short-term scheduling.
When processes exhausted their time quantum or block on PM-level semaphores, they were
returned to the PM, which would make a scheduling decision[62]. For the most part, user-
level scheduling in Hydra was coarse-grained, while the kernel was responsible for fine-grained
decisions.

A decade after C.mmp, the V Distributed System[17] also had a form of user-level schedul-
ing. It had a simple kernel scheduler that took directions from a dedicated scheduler process.
This process would influence kernel decisions by adjusting priorities, so that the kernel would
reach the decision the scheduler process desired. This technique was subset of the capabilities
of Hydra/C.mmp, and otherwise unremarkable. One neat, unrelated aspect to V was that
processes did not have kernel stacks. This was because the kernel had no blocking system
calls: the kernel was an event-driven microkernel, and had no need for kernel threads or
semaphores. With this situation, there is no need to have a particular kernel stack or kernel
thread for a process; the system just needs one stack per physical processor to handle traps
and syscalls.

Both Hydra and V provided a coarse-grained approach to user-level scheduling: set pa-
rameters or otherwise make long-term decisions, and let the kernel scheduler deal with fine-
grained decisions. This style of scheduling is only loosely coupled to particular applications:
the scheduler process typically does not know any details about the internals of an applica-
tion, such as which thread is performing a high-priority operation or holding a lock. This is

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 24

in contrast to other forms of user-level scheduling, such as that done by Scheduler Activa-
tions and any system with user threads, where process-specific information is used to make
decisions. Both coarse-grained and fine-grained user-level scheduled are useful in their own
way, but fine-grained scheduling requires tighter-coupling with the application.

Although M:N user-threading systems invariably require tightly coupled user-level thread-
ing, because the kernel does not even know about the user threads, it is possible to have
tightly-coupled, application-specific threading with 1:1 systems. Mach’s kernel scheduler had
facilities to allow user input into scheduling, based on a thread switch() primitive[11]. A
thread could tell the kernel to yield the processor, much like in other systems, and more
powerfully, it could tell the kernel which other thread to run in its place. Using the latter
form of scheduler hint was called Handoff Scheduling. Handoff Scheduling was used heavily
for message passing, to make sure the recipient would run quickly. Similarly, Google added
a kernel primitive to Linux, which uses a 1:1 model, called switch to, which supports their
user-level scheduling[108]. The switch to primitive is equivalent to Handoff Scheduling,
minus any of the other hints or options provided by thread switch(). Handoff Scheduling
is a good example of how not all kernel threading systems lack the benefits of user-level
scheduling. The reality is that there is a toolbox of various techniques, many of which can
be applied to a variety of systems.

Earlier I discussed that Hydra’s long-term and short-term scheduling was referred to
as two-level scheduling. Another related form of two-level scheduling was put forward by
Feitelson[27]. Instead of long-term job selection and short-term thread scheduling, his two
levels of scheduling are the allocation of processors and the decision of which thread uses the
processor. The slight distinction is that in Hydra’s two-level scheduling, specific resources
are not allocated to processes or jobs. In Feitelson’s model, which is the popular meaning for
two-level scheduling, resources (e.g. processors) are allocated to jobs, which then decide how
to use them. Usually, the second level of scheduling is controlled by the process application,
and the first level is controlled by the kernel. However, there is no reason why the user
cannot be in charge of the first level as well, similar to how Hydra’s policy modules control
long-term job selection.

Once user-space is responsible for making fine-grained, tightly coupled scheduling deci-
sions, there needs to be a way for multiple scheduling modules to interact. For example,
libraries such as OpenMP[80] or Intel’s Thread Building Blocks[91] make scheduling decisions
and request resources from the kernel. However, if there are multiple such modules, which
can occur when linking in multiple libraries, these schedulers do not know how to interoper-
ate. The core issue is that they cannot cannot simply work against the raw kernel interface,
even for M:N models; there needs to be one agent and interface per user. In Psyche, this
approach would have been dealt with by standardizing the location of the scheduler’s data
structures and function pointers, so that multiple schedulers and models could be supported
within a single application[61, 96]. In more recent times, the Lithe runtime[82, 83] would
operate as the mediator to the kernel and allow the composition of schedulers. Lithe has
the added benefit of recognizing and handling the hierarchy between user-level schedulers,
where threads from one scheduler spawn a collection of threads from a potentially different

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 25

scheduler.

Competition and Losing Cores

The issue Lithe solves, common to any solution of composing parallel libraries or other
competing schedulers within an application, is that of having a poor understanding of the
actual resources available to the library. For example, OpenMP and TBB both think they
have the entire machine available to them, and when both libraries are used simultaneously,
they make poor decisions. Both systems, and Lithe originally, were designed for 1:1 threading
model systems, e.g. Linux, and they would spawn an excessive number of kernel threads.
Lithe works as an interposition layer to prevent this over-subscription.

Lithe solves a problem of intra-process competition. In a similar manner, inter-process
competition involves multiple independent processes, all of which think they have the entire
machine available. For instance, the Go runtime knows how many physical cores a system
has and strives to have as many kernel threads, called machine threads, unblocked as there
are physical cores in the system. The runtime does this by pre-spawning new kernel threads
before attempting a potentially-blocking syscall. The problem is that there can be multiple
applications; the Go runtime should adjust the number of machine threads based on the
number of cores available to the application (virtual cores), not the number of total cores.

Both of these examples are the result of relatively young systems attempting to exploit
parallel processors, but being built on existing POSIX thread interfaces that conveyed little
information about those parallel processors. By contrast, Scheduler Activations would not
have had the problems of the Go runtime, where multiple applications could think they had
the entire machine to themselves.

It is important to note the dual aspects of resource preemption. From the perspective of
the preemptee, the program needs to adjust to the loss of a resource. Another perspective,
less commonly thought of, is from the application to which the resources will be given: it
needs the resources, and any delay may violate a larger objective. Speedy preemption is
important for a quick reallocation to meet the system’s coarse-grained scheduling goals.

Writing a kernel interface that tells a process how many cores it has been given is a
relatively easy step that would alleviate some of these concerns. However, this step is
insufficient: kernel interfaces and runtimes need to handle resource revocation. The root
issue is one of competition and that the nature of the competition can change over time.
Not only can there be multiple applications in a system, but their relative priorities and
workloads can change over time. Additionally, processes will have variations in the amount
of parallelism available at any given time, and dynamically reallocating processors among
these processes is important for high performance[116]. Processors that the kernel granted
to one application can be preempted by the kernel and given to another application. Any
user-level runtime or scheduler needs to handle these scenarios.

M:N models that were built on kernel threads on legacy kernel interfaces, such as Solaris
Threads or Go, tend to have no information about preemptions. Usually this is because
the kernel interface simply does not exist, and the plan is to let the kernel scheduler work

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 26

it out: eventually the N cores will run. These situations are not ideal for the application’s
performance. Lock-holders could be preempted, high-priority threads could be waiting, and
threads could be running far away from caches where their data exists. User-level schedulers
like Scheduler Activations and Psyche had plans for dealing with preemption and could avoid
some of these ill effects of preemption. This was somewhat a necessity of having virtual
multiprocessor and processor abstractions: on occasion they could disappear. Having a
powerful user-level scheduling kernel interface is both a boon and a curse: a process has
more control over its processor, but it has more responsibilities. One of these is dealing with
preemption.

As discussed in Section 2.2, Psyche had a “two-minute warning” event sent to the process.
After a specified amount of time, say 3ms, the processor would be revoked. Psyche’s plan
was to have the runtime yield before that happened. If that did not happen, then it was not
a big deal: eventually that virtual processor would run again on that same physical core.
The drawback is that this system is incompatible with truly dedicating physical cores to an
application; allowing multiple virtual processors on a single physical processor means that no
single application owns that processor. For instance, Psyche’s virtual processors could not
migrate to other physical processors. The system was not built with virtual multiprocessors
in mind, and thus a critical section or other important block of code could be preempted
permanently and possibly deadlock.

Scheduler Activations could handle a preempted activation, as discussed in Section 2.2,
by sending an event to another processor belonging to the application. That event handler
would decide how to handle the preemption: specifically it would need to decide which
previous context to run, the one it was running or the preempted one. The problem arises
when the runtime cannot make that decision. It is possible that both contexts were in critical
sections in the runtime code, and the preemption handler would be unable to determine if
there are any hidden dependencies between the two, such as one thread holding a lock the
other will spin on soon. The most common situation for this sort of deadlock is when lock
holders are preempted, though there are many other situations in complicated, synchronizing
scheduler code. Scheduler Activations limitation was that it could not handle all situations
cleanly.

There are many lessons for scheduling and competition, both from old systems and new:

• Coscheduling / Gang scheduling is one part among many that make up a virtual
multiprocessor; it is important for performance that all threads communicating run in
parallel.

• Userspace needs to provide input on where and when threads and processes run. It can
be involved in two separate levels of scheduling: both coarse-grained resource allocation
decisions and fine-grained decisions about which thread runs on which processor.

• Scheduling decisions can come from code either loosely or tightly coupled with an
application. More coupling requires more programming effort but with greater payoff.

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 27

• Be prepared to handle changing resource allocations. The kernel needs to expose the
details of which physical resources are allocated to userspace. Likewise, userspace need
to be prepared to adapt and perform well as these resources change.

2.4 Synchronization

User-level scheduling is important for performance; often the application knows better than
the kernel which thread to run. Nowhere is this more clear than with user-level synchroniza-
tion: when a thread holds a lock, it is implicitly scheduled and is usually the highest priority
thread. Locking invariably happens in userspace: the operations are faster due to the lack of
system calls and the kernel does not need to know the locking strategy. As a result, when the
kernel makes scheduling decisions, the kernel does not know which thread is a lock-holder
and cannot prioritize it. Many systems have battled with how to prevent kernel decisions
from interfering with user-level synchronization; it is a special case of user-level scheduling,
yet a very common one.

It is well known that time-slicing is harmful to spin-based synchronization[115]; if the
kernel deschedules a lock-holder, the remaining threads will busy-wait and waste the pro-
cessing time that should be used to run the lock-holding thread. The obvious solution to
allowing fast user-level synchronization is to simply gang schedule the entire application,
forever. Unfortunately, while dedicating hardware to a single application may be useful in
some cases, it is not a generally useful solution and is wasteful of resources.

There are many types of spin-based locks, and based on the nature of the locking strategy,
preempting lock-waiters can also harm performance. The classic spinlock consists of all
contenders looping while attempting to atomically test-and-set a memory location to
“grab” the lock. Preempting the lock-holder is clearly harmful, since all other threads will
spin. Preempting a spinner is harmless. However, there are other locking strategies. The
MCS lock[69] is a queue-based, FIFO lock, designed for scalability to large numbers of
contenders by minimizing cache coherency traffic. Lock contenders form a linked-list, and
the lock is passed down the queue. If an intermediate contender is preempted, eventually the
lock will be passed to them while it is offline; in essence, a lock-holder was preempted before
it was a lock-holder. There are many other locking algorithms with similar issues, such as
Lamport’s Bakery Algorithm[51] and Ticket Locks[22].

A variety of techniques have been developed to deal with preempted lock-holders. The
simplest is for the application tell the kernel, possibly via shared memory, when a thread
grabs a lock or otherwise enters a critical section[23], and the kernel can allow the thread
to continue running for a while. In Symunix[23], there were two flags: one controlled by
the user requesting not to be preempted and another controlled by the kernel alerting the
user that it was given a continuance. Any extra time granted was taken from the next time
quantum.

With the “please do not preempt” flags approach, the kernel needs to make scheduling
decisions. How long does it allow a process to continue in its critical section? Should the

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 28

kernel migrate this process to another processor allocated to the application? Delaying the
preemption may be unacceptable; delaying a core preemption means we delay the allocation
to another, possibly higher priority process. Migrating to another processor is also tricky:
what if the thread on that processor is also in a critical section? Even worse, what if that
second thread is waiting on the lock held by the first thread? Many of these schemes to
avoid preempted lock-holders do not consider nested locks, which are very common in more
complicated scenarios.

As Wesniewski, Kontothanassis, and Scott point out, the flags approach does not work
for queue locks[113]. Wesniewski et al.[113] propose two modifications to MCS locks for use
with approaches similar to the Symunix flags in which a lock-holder attempts to make sure
the next thread in the queue is running. One method is a handshaking protocol in which
the original lock-holder waits for a memory write from the new lock-holder to ensure it is
running. Another involves extending the kernel interface to include four states of various
levels of preemption for a process, which the lock-holder inspects. In both methods, if the
next thread in line is preempted, it is skipped over and it will retry. The extra states are
due to race conditions and related to the queue lock, and unfortunately they clutter the
kernel interface with lock algorithm-specific details. Additionally, the method still relies on
the kernel to delay the preemption or immediately reschedule the lock-holder. The flags
approach is a preventative approach, and it is often harder to preempt than to recover.

Rhee and Lee[92] developed another method for dealing with preemption with MCS lock
participants. Part of their motivation was to not check and set the kernel interface flags for
every lock acquisition, and instead only recover from preemption. Instead, before joining an
MCS queue, the process tells the kernel the address of its struct qnode (the bookkeeping
structure added to the linked-list). The sign-up code executed while joining, not during the
lock handoff, which may help during heavy contention. When a lock-holder unlocks and
passes the lock to the next queue member, it performs a kernel operation similar to Black’s
Handoff Scheduling to ensure the new lock-holder runs. The primary distinction of Rhee
and Lee’s approach is when the preemption of a lock-holder occurs: the kernel inspects the
qnode to determine if the process was a lock-holder. This technique closely couples the
kernel and the locking algorithm: the kernel needs to know what a qnode is and how it
works[92]. Due to the large number of locking algorithms available to applications, tying the
kernel interface to a specific protocol is unduly limiting, especially consider how no single
locking algorithm works for all workloads and levels of contention. Even if the kernel had
the ability to understand multiple types of locks, extending a kernel interface to support new
locks would be painful.

Scheduler Activations developed another technique for determining if a thread was in
a critical section. All critical sections were annotated or otherwise marked, such that by
inspecting the program counter (PC) of a suspended thread, a preemption handler could
determine if the thread was a lock-holder or not[2]. Building PC-based detection into the
kernel would be extremely difficult, due to the close coupling of the PCs and the address
space. Instead, Scheduler Activations could perform this optimization because userspace was
responsible for scheduling.

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 29

When lock-holders, or other threads in critical sections, were preempted in Scheduler
Activations, the kernel sends an event via a new activation to another processor belonging
to the address space. The runtime on that processor would handle the event. The handler
inspected the PC, and if the preempted context was in a critical section, then the handler
changed the PC to a block of identical code that executed the remainder of the critical
section. The identical code was different in one way: it yielded to the runtime when it was
complete. The handler switched to the preempted context, which would finish its business
and then yield[2].

There are three minor issues with this approach: critical sections cannot call functions
(they fall back to a flags-based approach), all critical sections need to be copied, possibly
at compile time, and critical sections are not always obvious. It is not sufficient to only
treat lock acquisitions and releases as a critical section. Individual locks can be part of a
larger critical section, involving nested or sequential locks. For similar reasons, Scheduler
Activations treated their entire runtime as a critical section, but similar issues would arise
for application code.

More seriously, both the PC-marking and the kernel flags approach suffer from a common
issue: false positives and false negatives. False negatives are extremely costly, since the
preemption is not even detected at all. These techniques can only detect that a thread is
attempting to grab a lock, not that the thread actually has the lock. To guarantee no false
positives, the lock acquisition code must atomically grab the lock and announce that it is
the lock-holder. For the flags approach, if one sets the flag before locking, there is a window
where the lock is not acquired. If the flag is set after locking, there is a chance for false
negatives. Similar issues exist for the PC approach: the false negative can occur if the PC
only consists of code after the lock, and false positives otherwise.

Although Symunix and other kernel-scheduling based models can handle both false pos-
itives or negatives, user-level thread schedulers cannot. If the kernel fails to handle a pre-
empted thread in a very rare case, eventually the kernel will time-slice the preempted thread
and no deadlock will occur. For Scheduler Activations, the results are worse. Recall that
when a lock holder is preempted, another context is preempted and an event is sent to that
core. The event handler needed to decide which context to run: the originally preempted
one or the secondary context. The dilemma is that both contexts can be in critical sections,
or at least contending on critical sections, and it is impossible to determine which is the
lock-holder. Either thread could be spinning, waiting on the lock held by the other.

Even worse, if one eliminates the false positives from the critical-section-detection code,
both contexts could legitimately be lock-holders, and yet a poor decision by the runtime
could result in a deadlock. Consider a system with three spinlocks, A, B, and C. There are
two separate code paths: acquire A then C, and acquire B then C. Two separate contexts
could acquire and A and B, and then one of them acquires C. If they both are preempted, the
runtime must choose which to run, but it is unable to determine which to restart. If there is
only one processor available, then the process will deadlock. Additionally, it is possible that
the process will never get the extra cores it requires to break itself out of the deadlock. This
is a limitation of the Scheduler Activations model, in that the runtime must choose between

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 30

two options without the flexibility to handle odd cases.
There are other techniques for handling preempted lock holders or queue lock partici-

pants. Scott and Scherer developed a version of the MCS lock that can time-out, which
can be used to detect a potentially preempted lock-holder[97]. Failure is a useful technique,
especially in parallel databases, but it can be difficult to program when any lock acquisition
could fail. Later, He, Scherer, and Scott developed another technique to detect preemption
for MCS participants: each thread writes what time it thinks it is in a shared-memory region.
If a thread falls behind, then it likely was preempted[36].

Dealing with preempted lock holders is complicated, and more so for user-level schedulers.
Our lessons are:

• Preemptions will happen, and we need a clean way to detect preemption when it does.

• There are a variety of locking strategies, and one size does not fit all. We do not want
to build a particular locking strategy into the kernel interface.

• Detecting critical sections is difficult: unless a thread atomically grabs the lock and
marks itself as a lock-holder, there will be false positives or false negatives.

• User-level schedulers make preemption recovery more difficult: if they choose the wrong
thread to run, they could deadlock. Additionally, the preemption handling code itself
could be preempted.

2.5 Performance Isolation

Parallel applications, especially those that communicate among their threads, are sensitive
to interference. For predictable, high performance, parallel applications need performance
isolation from other programs. If a machine is dedicated to a single application, then that
application still needs some form of isolation from the OS.

With regards to processors, there are a few different types of interference that are under
the control of the operating system. Three three types are really two more generic types:
the OS’s scheduling decisions and the OS itself.

• Interprocess scheduling: the operating system did not give the process sufficient re-
sources, e.g. cores.

• Intraprocess scheduling: for systems where the kernel schedules a process’s threads,
the kernel may run the “wrong” thread.

• The operating system itself: interrupts and background tasks can interfere with an
application that has been granted a core.

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 31

In this work, I focus primarily on processors, but obviously processors are not the only
resource in a system. Contention for RAM, caches, bandwidth, and devices can also dra-
matically affect performance. Dealing with any sort of performance isolation will require
considering all resource types.

Operating System Noise

The operating system itself is responsible for various types of interference, even when the
core is dedicated to a particular application. Many general purpose operating systems are
designed such that every core runs its own scheduler. Although not as independent as nodes
in a distributed system, each core is relatively on its own: each has a timer tick, a run
queue, and background jobs. For instance, on Linux these background threads include the
migration thread, ksoftirqd, the generic event workqueue, kblockd and other housekeeping.
Furthermore, there are a variety of device interrupts which are often sent to all cores to lower
IRQ latency. Operating systems such as Linux provide tools to reroute interrupts away from
cores and to pin applications to cores. Even in this case, certain interrupts such as the timer
interrupt are not reroutable. These various types of interference are referred to as operating
system noise or jitter.

Interference problems with general purpose operating systems are well known in the High
Performance Computing (HPC) community[84, 29, 48]. Several custom HPC operating
systems have been developed to provide better support for HPC applications[75, 93, 54].
These are typically lightweight kernels that run on compute nodes of supercomputers, and
their goal is to reduce OS noise.

As an example of why a brief interruption can be harmful to performance, consider a large
application running on 1024 processors. The application consists of phases, with barriers in
between each phase. If one processor is delayed slightly, then all remaining processors are
delayed at the barrier. In essence, the delay of one processor is magnified. This problem is
specific to parallel programs that communicate; independent, single-threaded tasks that do
not communicate only suffer the initial delay. The effect of interference on an application
is based on the characteristics of the interference and the communication. Low-frequency,
long-duration interruptions from background tasks are especially damaging[29].

Sottile and Minnich developed a benchmark to both measure and, more importantly,
analyze system noise. The Fixed Time Quantum (FTQ) benchmark[101] measures how
much work is done in a small time quantum, over a larger time interval. The ideal situation
is for there to be no interference at all. The benefit of FTQ over previous benchmarks is that
the time-slice is fixed, which means the benchmark’s output can be analyzed for periodic
signals. For instance, imagine a scheduler tick every 10ms: while the interference may be
hard to detect from looking at the raw output, if one runs an FFT on the data, the 10ms
spike is readily apparent. I discuss FTQ in later sections, as it is very useful to determine
the sources of OS noise and to compare different operating systems’ isolation.

Linux is also pursuing a path towards less OS interference. The latest is a series of
patches by Frederic Weisbecker called “Adaptive NoHZ”[111]. The idea is to turn off the

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 32

scheduler tick on cores that have only one process running. The patches remove the OS
jitter associated with the scheduler tick (3% on FTQ). Adaptive NoHZ is now a kernel
option, as of 3.10[21]. Linux still has some background interference, such as global IPIs for
cache management, which other people are working on removing. Features such as per-core
runqueues will be harder to remove, and are the result of extending a uniprocessor OS to a
small-scale SMP.

Resource Allocation

Many researchers in the OS and real-time community have worked towards performance
isolation on general purpose OSs[32, 73, 26, 78, 114]. For example, Verghese, Gupta, and
Rosenblum developed a Software Performance Unit (SPU)[110] which allows the sharing of
resources between high-priority jobs and background tasks. SPUs could isolate CPU time,
memory, and disk bandwidth. One drawback is that SPUs rely on processes to actively
share unused resources with background tasks, instead of allowing the system to manage
these resources. Mercer, Savage, and Tokuda developed a processor reserves system in
Real-Time Mach[70]. Reserves provided processor isolation by reserving the processor at
particular times for a real-time application, while allowing time-sharing during the other
times. Reserves were static and for applications that have a predetermined schedule.

Systems such as VServer[100], Solaris Zones[87], and Linux Containers[60] provide re-
source partitioning within an operating system. However, they attempt to completely isolate
applications: the systems isolate not only performance but also configuration, namespace,
and all forms of interaction. These container systems are similar to virtual machines (VMs)
and they are often considered lightweight virtualization. VMs are also used for resource
isolation. Although very useful, VMs are simply the wrong abstraction for interacting ap-
plications on a single system. They needlessly couple protection with resource management
and do not normally allow flexible sharing or reallocation of resources. Other than for con-
venience, protection domains do not need to be coupled to resource management. As an
example of the reverse, consider a basic chroot: it has an isolated namespace and cannot
interact with other processes, but there is no performance isolation. In that regard, Banga,
Druschel, and Mogul developed a resource containers system[6]. Resource containers allow
accurate accounting of resource utilization, independent of the execution context, effectively
decouple resource management from protection.

Instead of merely partitioning resources in software, systems can also partition resources
in hardware. Back in the 1970s, C.mmp[62] had hardware switches that could physically
partition processors and memory. These switches were programmable by software running
on processor 0. The original intent was to run multiple independent versions of Hydra, but
a lack of RAM made that infeasible. Instead, the feature was used to perform maintenance
in parallel with normal operations and to isolate faulty hardware.

Any serious multi-tenant system will need some form of resource isolation. When a system
also can reduce its OS noise, parallel applications can achieve predictable, high performance.
Many systems have done so, and there are some lessons we can learn:

CHAPTER 2. BACKGROUND ON OPERATING SYSTEMS 33

• Both resource allocation and OS noise can affect application performance; both need
to be addressed.

• Performance and resource isolation do not need to be coupled to all forms of isolation.
It is more flexible to provide performance isolation as one option among many.

• Static partitioning is inefficient when applications have dynamic resource requirements.
We would like to both reserve resources for high-priority applications and utilize idle
resources.

34

Chapter 3

The Basics of the Many-Core Process
and Akaros

The primary change to operating systems to better support parallel processes is a funda-
mental change to the process abstraction itself. In my work, this new process abstraction
is called the “Many-Core Process” (MCP). The MCP has many characteristics of previous
solutions to parallel processing and is the intersection of many of the “lessons learned” from
prior work. In this chapter, I will describe the MCP at a high level and discuss relevant
details about the Akaros Operating System, as a preparation for the details of the MCP in
the next chapter.

3.1 MCP Basics

The MCP is similar to the familiar Unix process, likewise called an address space in Topaz
and many other systems. MCPs are a vehicle for running user-level code, are the unit of
protection and control in the kernel, communicate with each other, and are executing in-
stances of a program. The kernel maintains a process control block for each MCP, containing
information such as the open file table and the page tables. MCPs differ from Unix processes
and other kernel-threading based systems in that they directly provide a virtual multiproces-
sor. The kernel grants an application cores directly, instead of threads, and exposes various
structures relating to the management of cores. Additionally, MCPs are designed from the
ground-up to support user-level threading and scheduling. These decisions are based on
lessons from prior work:

• The kernel thread needlessly couples both parallelism and I/O concurrency and should
not be the kernel-provided abstraction. A virtual multiprocessor abstraction is key,
wherein the available physical cores are exposed to the application.

• Thread-specific details, such as what sort of stack to use, and operations, such as
context switches, need to be in userspace for the highest performance.

CHAPTER 3. THE BASICS OF THE MANY-CORE PROCESS AND AKAROS 35

• Userspace needs to provide input on where and when threads and processes run.

The MCP extends the traditional process model in the following ways:

• All of an MCP’s cores are gang scheduled, and a process will always be aware of which
cores are running.

• Faults are redirected to and handled by the process in a software-interrupt handling
context.

• There are no kernel tasks or threads underlying each thread of a process, unlike in a
1:1 or M:N threading model. The kernel may use threads internally, but they are not
connected to the process abstraction or the user-kernel interface.

• All system calls are asynchronous and never block the user’s core.

• Resources, such as cores and memory, are explicitly granted and revoked.

• MCPs will not receive unexpected, unwanted interrupts. When a core is granted, it is
completely dedicated to the process.

Earlier I remarked that Scheduler Activations provided a virtual multiprocessor, but
failed to provide a virtual processor. Likewise, Psyche did the opposite: it had virtual
processors, but not a virtual multiprocessor. The MCP provides both: the application has
a virtual multiprocessor made up of virtual processors. Unlike Scheduler Activations, the
MCP cores are not a scheduling policy for kernel threads (activations), but instead act more
like Psyche virtual processors that act similar to hardware processors.

From the user’s perspective, an MCP is a collection of cores, running user code and
syscalls in parallel. Userspace schedules and manages its own threads on these cores. Most
of userspace’s code for managing the MCP is a user-level scheduler library, linked and closely-
coupled with an application. The user-level scheduler is also called a second-level scheduler
(2LS), where “second level” has Feitelson’s meaning[27]. The two levels of scheduling are the
allocation of processors and the decision of which thread uses the processor. The kernel is
responsible for the first level, and the 2LS is responsible for the second (thread scheduling).
Note that loosely coupled, userspace daemons can influence the first level of scheduling with
provisioning, as discussed below in Section 3.2. As we saw from previous work, userspace
needs to be involved in both levels of scheduling.

Other lessons from previous work contribute to the MCPs features. Gang scheduling
is a natural fit for virtual multiprocessors. OS noise can affect application performance;
hence the lack of unexpected interrupts. The combination of gang scheduling and a lack of
interference allows better cache utilization and fast synchronization. Asynchronous syscalls
or some mechanism is necessary to return control to userspace when syscalls block.

It is worth stating again that there are no kernel tasks or threads backing any part of
an MCP: neither user thread nor virtual core. In older systems, kernel threads were either

CHAPTER 3. THE BASICS OF THE MANY-CORE PROCESS AND AKAROS 36

used explicitly or implicitly, as in the case of Scheduler Activations, to build the parallel
processing abstraction. In existing systems, such as Linux, the kernel thread in the form of a
pthread is used for both parallelism and I/O concurrency. The MCP differentiates from these
models by explicitly separating cores from threads. Simply put, cores are for parallelism,
and threads are for concurrency. The kernel interface is only concerned with cores; userspace
does not know or care whether or not there are kernel threads at all.

Before going into any greater detail on the MCP, we need to learn a little about Akaros.

3.2 Akaros Details

Akaros is a research operating system for high performance and parallel applications on
single-node, large-scale SMP and many-core architectures. Although the MCP is a major
component of Akaros, it is part of a broader approach to supporting high-performance ap-
plications, especially in a data center. Akaros’s philosophy is one of transparency: the OS
exposes information about the underlying system to application and provides interfaces for
them to request exclusive access to explicitly granted resources.

A critical point about transparency is how Akaros deals with resources and virtualization.
Akaros grants physical resources to applications, but does so through a virtual naming
system. Consider a resource, such as RAM. Virtualization is used for naming and is often
used to share scarce physical resources among processes. In the case of RAM, a page of
memory has a virtual address that can map to a physical address via a page table, and it
may or may not be backed by an actual physical page. From the perspective of a process’s
instructions, the page exists; it just may require a page fault handler to allocate a physical
page to map. Interposing on a virtual resource is very useful for operating systems. The OS
can conveniently share a resource among many processes such that they all believe they have
their own resource. However, there is a tradeoff: the convenience of virtualization comes at
the cost of performance when a resource is not physically present. Akaros uses virtualization
for naming, but applications will always be aware of the existence underlying resources. For
instance, Akaros uses virtual memory and paging hardware, but userspace is in control of
whether or not the virtual pages are backed by physical pages, and userspace has read-only
access to the actual page tables.

From the programmer’s perspective, Akaros supports some aspects of the POSIX interface
and has a variety of custom extensions for its own use. The OS and toolchain is compiled with
GCC, and there are ports for glibc and Go. Basic programs like busybox and pthread-based
applications compile and run with minimal modifications. Akaros also has major portions of
the Plan 9 Operating System[85] incorporated into the kernel; specifically the namespaces,
networking stack, and various device drivers. Akaros runs on x86 and RISCV in both 64
and 32 bit modes, though 32 bit support is likely to go away. Although supporting existing
toolchains and infrastructures is useful both for researchers and adoption, the main focus of
Akaros is in how it differs from existing OSs, not in how it is similar.

CHAPTER 3. THE BASICS OF THE MANY-CORE PROCESS AND AKAROS 37

Kernel Scheduler Design

The Akaros kernel scheduler’s job is to allocate spatially partitioned, gang scheduled cores,
with the additional desire of no kernel interference per core. As systems have more and
more cores available, spatial partitioning becomes increasingly valuable. Likewise, with
many cores, traditional per-core kernel schedulers may become a scalability bottleneck and
a source of interference.

The Akaros kernel runs a centralized scheduler with a single run queue, in contrast to
the more common per-core run queues. To gang schedule with per-core run queues, an OS
needs to coordinate between the multiple schedulers so that the same process is scheduled
at the same time. In contrast, the Akaros scheduler simply instructs a small executive on
the cores to run the appropriate process. It is analogous to having per-core run queues with
a maximum of one process per queue, with less complexity and no timer interrupts. The
global scheduler code can run on any core, and it is driven by both interrupts as well as
requests from userspace. Typically, the scheduler runs in response to a timer interrupt on
core 0.

In traditional operating systems, the time quantum is the same throughout the system,
and larger quanta mean higher throughput at the expense of the responsiveness of other
processes. The Akaros kernel scheduler uses different time quanta on separate cores, based
on their type. Cores are either coarse-grained cores (CG) or low-latency cores (LL).

LL cores, also called management cores, run a typical timer tick at 100Hz or 1000Hz.
Application event handling, interrupt handling, single-core processes (SCPs), and kernel
housekeeping tasks are scheduled on LL cores at a fine granularity. LL cores are analogous
to front-end processors in mainframe and cluster computers.

MCPs are scheduled with a coarse granularity on the CG cores, and no undesired inter-
rupts are sent to CG cores. The coarse granularity implies less overhead and better cache
and TLB performance due to fewer context switches. An MCP reaps greater benefits from
isolation and gang scheduling when it is given a larger time quantum. The actual amount of
time an application runs on a CG core is dependent on the overall scheduling policy; there
is no specific quantum, and they are spatially partitioned. When an application has a core
granted to it, it is the only application on that core. Based on priorities, the kernel may
never reallocate the core.

In the current code base, core 0 is the only LL core, and the plan is to allow the scheduler
to dynamically change a core’s type. LL cores are basically the same as cores in existing
OSs, and the distinction only matters when discussing CG cores. In Akaros terms, current
general purpose OSs consist entirely of LL cores.

Provisioning and Allocation of Resources

Akaros’s resource management is driven by a policy that makes a distinction between pro-
visioning and allocation. Recall from prior work’s lessons learned:

CHAPTER 3. THE BASICS OF THE MANY-CORE PROCESS AND AKAROS 38

• Userspace needs to provide input on where and when threads and processes run. It can
be involved in two separate levels of scheduling: both coarse-grained resource allocation
decisions and fine-grained decisions about which thread runs on which processor.

• Static partitioning is inefficient when applications have dynamic resource requirements.
We would like to both reserve resources for high-priority applications and utilize idle
resources.

The Akaros scheduler allows userspace to provision a set of resources for a process. Pro-
visioning a resource to an application is a guarantee of future, uninterrupted access to that
physical resource. When the application asks for the resource, the kernel will perform the
allocation. Provisioning is directed by userspace; this is the coarse-grained resource alloca-
tion decision-making that userspace needs to be able to make. The fine-grained scheduling
decisions are made by user-level schedulers (2LSs) within an MCP.

Resources that are provisioned, but not allocated to the provisionee, can be allocated to
another process, similar to backfilling in cluster schedulers. When the provisionee requests
the resource, the kernel revokes the resource from the current user, and allocates it to the
provisionee. Provisioning and preempting allows the system to respond to changes in work-
load and priorities, unlike static partitioning schemes. Typically, resources are provisioned
to an application based on peak load, and the amount used at any particular time may be
less. High-priority applications have the resources they need, and resources are not wasted.

Provisioning in Akaros is done with the syscall:

sys_provision(int pid, int res_type, int res_val)

Allocation requests are posted to a user-writable shared memory region, where there is an
array of the following structs:

struct resource_req {

unsigned long amt_wanted;

unsigned long amt_wanted_min;

int flags;

};

The kernel will not run the process unless at least amt wanted min is set, though this is
not used currently. A process can ask the kernel to check this structure by using the syscall
sys poke ksched(); otherwise the kernel will check it periodically.

Older versions of resource requests passed the values in the system call, instead of in
memory. The reason for the indirection is that it removes locking and minimizes some
race conditions in userspace where multiple cores may be modifying amt wanted. It allows
userspace to operate directly on the real fields, notably amt wanted, with atomic operations
and without needing to maintain shadow state.

Although the provisioning system is built to handle multiple types of resources, currently
Akaros only supports provisioning cores. For an MCP, this means that a provisioned core

CHAPTER 3. THE BASICS OF THE MANY-CORE PROCESS AND AKAROS 39

is uninterruptible and irrevocable while it remains provisioned. An unprovisioned, allocated
core can be preempted at any time.

Of course, provisioning can change over time. The kernel expects a user-level daemon
to set the provisions and adjust them over time, similar to C.mmp’s policy modules. In the
data center, these decisions would be made by a cluster manager, such as Mesos[39], and the
daemon would be the agent controlling the single node.

Kernel Messaging

Akaros has a kernel-to-kernel messaging service, where messages are simply work that is
shipped remotely, delayed in time, or both. They consist of a function pointer, a few argu-
ments for that function, and source and destination id numbers. Kernel messages (KMSGs)
of a given type will be executed in order, with guaranteed delivery. These were originally
an implementation of low-level hardware messaging based on Active Messages[24]. KMSGs
are very useful in MCP management code and are the primary means of giving a core to a
process.

Initially, kernel messages were meant to be a way to immediately execute code on another
core (when interrupts are enabled), in the order in which the messages were sent. Although
useful, this was not sufficient for some use cases. For one, some subsystems want their
functions to run when the kernel is not in interrupt context. More specifically, some kernel
messages do not return because they start running another context. The kernel cannot run
these sorts of messages while interrupting arbitrary kernel code. Failing to return means the
previous context is completely destroyed, and locks, reference counts, and pointers could be
lost. Instead, certain types of kernel messages are queued up and executed at a convenient
time. These delayed messages are also very useful for deferring work on the core sending the
message, similar to the usefulness of self-IPIs (interprocessor interrupts).

Currently, there are two types of KMSGs, distinguished by which list they are sent to
per core: immediate and routine. Immediate messages will get executed as soon as possible,
directly in interrupt context. Routine messages will be executed at convenient points in the
kernel. These spots include when the kernel is about to pop back to userspace or calling
an idle function (smp idle()), which checks for work to do and otherwise halts the core.
Routine messages are necessary when their function does not return. They should also be
used if the work is not worth fully interrupting the kernel. Finally, they should be used if
their work could affect currently executing kernel code, such as a syscall.

The general approach for sending kernel messages is to grab the destination core’s lock,
and add a memory-allocated block containing the message to the appropriate per-core linked
list. Then send an IPI to that core. For immediate messages, the IPI is mandatory. For
routine messages, an IPI is usually sent, but certain optimizations are available. If the sender
can determine by inspecting certain flags for the destination that the destination core is in
the kernel and will later check routine messages, it can avoid the IPI. This optimization is
similar to the grace periods used in Read-Copy-Update[68] (RCU), a kernel synchronization
method used in Linux. Another potential optimization is to use fixed-sized arrays for the

CHAPTER 3. THE BASICS OF THE MANY-CORE PROCESS AND AKAROS 40

messages, and only use the locks, lists, and memory allocator when the arrays overflow. Care
needs to be taken to maintain the proper ordering of messages when transitioning to and
from the array and lists. I have not needed to implement either optimization yet.

MCP management code makes heavy use of routine kernel messages. Even though these
MCP management functions return, they must still not be immediate messages. These
messages can change the ownership of a core, which can interfere with some system calls
that are in progress. The safe thing to do is to delay the work until it is safe to run routine
messages.

With routine messages, there are no concerns about the kernel holding locks or otherwise
interrupting its own execution. Additionally, routine messages are allowed to block in the
kernel on a semaphore or condition variable. Despite the hazards of immediate messages,
there are still plenty of use cases. For instance, an example of an immediate message would
be a TLB shoot-down. Immediate messages are basically just interrupts with arguments,
subject to the same restrictions of interrupt handlers in operating systems.

Other than process management, a major user of kernel messages is the ability to launch
or resume a kernel thread.

Kernel Threading and Asynchronous System Calls

The MCP abstraction is one of cores, not threads. The kernel does not know about the user’s
threads, only that the user executes on cores. Likewise, the user has no hints as to whether
or not the kernel uses threads. Internally, the kernel uses a form of lightweight threading
that does not affect the user’s execution model. A struct kthread has very little to it: a
set of registers, a stack, and some slight bookkeeping. There is no floating point state; that is
saved per-core, when relevant. Kthreads are used for executing system calls and performing
internal kernel work.

Originally, the plan for Akaros was to be a purely event-driven kernel. I mentioned
earlier that V’s processes did not have kernel stacks. This was because the kernel had no
blocking system calls: the kernel was an event-driven microkernel, and had no need for
kernel threads or semaphores. Akaros was going to do the same thing: have a single stack
per physical processor to handle traps and syscalls. However, Akaros is not a microkernel,
and its syscalls are more complicated than just sending messages to user-level servers.

Why not just be event driven for all I/O? Why do we even need kernel threads? In
short, I/O subsystems are not as simple as “perform a blocking operation and when it
completes, run a function.” Although that is what the block device driver will do, for
example, the subsystems actually needing the I/O are more complicated. Consider the
potentially numerous blocking I/O calls involved in opening a file in a common file system
such as ext2. The path lookup alone could require several reads, and inodes may have
several levels of indirection to reach an actual block. Having a continuation for each one
of those points in the call graph is a painful way to code. Additionally, it is often unclear
if a particular operation will block or not. For instance, when performing a path lookup,
directory entries (dentries) along the path may or may not be in a cache. When programming

CHAPTER 3. THE BASICS OF THE MANY-CORE PROCESS AND AKAROS 41

these systems, it is much simpler to use a thread, and it only costs a page plus a small data
structure.

Note that using threads does not mean that all I/O needs to use kthreads, just that some
scenarios will benefit from it. Event-driven styles are still useful, and it is possible to pursue
a hybrid approach. For instance, in a read() call, the kernel can pursue a threading style
for the intermediate I/Os (such as inode lookups), and use an event driven style for the final
device read. In this scenario, there is a simple continuation attached to the I/O, sufficient to
clean up and finish the system call, but not requiring the full stack and thread state. I have
not built this in Akaros, mostly due to lack of time and that it would require possibly major
adjustments to the existing OS subsystems. Regardless, events and threads in the kernel are
both tools in a toolbox, and ideally we would pick the right tool for the job. When choosing
between events and threads, the developer should consider the number of potential blocking
calls and the amount of live state to maintain across the blocking calls.

The critical aspect of kthreads in Akaros is that they are not part of the user-kernel
threading model. In typical OSs, some aspect of a kernel thread is involved in the execution
of a syscall. For 1:1 systems, the connection is obvious; when the kernel thread executing the
syscall blocks, so too does the user thread. Likewise, for M:N systems, when N is the number
of kernel threads. For systems like Scheduler Activations, even though N is the number of
processors, the kernel thread is connected to the activation. When a kernel thread blocks on
a syscall, the user restarts on a new activation. A large part of the distinction between Akaros
and these systems is the asynchronous system call interface. For systems with synchronous
syscall interfaces, the control flow is linked to whether or not a syscall completed or not.
With an asynchronous interface, the user retains control of its core independently. Since
kernel threads are not part of the model of execution, even when control returns to the user,
the kernel may or may not have used blocking kernel threads. The kernel is free to explore
both event-driven or thread-based approaches for executing syscalls.

The main benefit to decoupling kthreads from a virtual core or per user process/task
is so that when the kernel blocks, it can return to the process. This is the essence of the
asynchronous syscall interface, though it is not limited to syscalls; I discuss page faults in
Section 4.4.

In Akaros, the syscall contract is based around the syscall struct:

struct syscall {

unsigned int num;

int err; /* errno */

long retval;

atomic_t flags;

struct event_queue *ev_q;

void *u_data;

long arg0;

long arg1;

long arg2;

CHAPTER 3. THE BASICS OF THE MANY-CORE PROCESS AND AKAROS 42

long arg3;

long arg4;

long arg5;

char errstr[MAX_ERRSTR_LEN];

};

To issue a syscall syscall, userspace fills in the number and the arguments, then submits
the struct to the kernel. Typically, the program traps into the kernel, passing the pointer
to the struct. For calls that do not block, usually the kernel will finish the call and return
to userspace. For calls that block, the kthread blocks and a new one takes over the core
and returns to userspace. Either way, the application does not lose its core. When finishing
syscalls, the kernel writes in the return value, sets a flag, and optionally sends an event, as
discussed further in Section 5.2.

Although most syscalls in Akaros are local, meaning that they are submitted to the kernel
via a trap, there is also a subsystem that allows the posting of syscalls into shared-memory
ring buffers where the execution of a syscall can happen on another core. Since the contract
between the user and kernel is the syscall struct alone, it makes no difference whether or
not the local kthread executes the syscall, if another kthread executes on another core, or if
there is no kthread whatsoever.

When a kthread executes a syscall on behalf of a process, it executes in that process’s
address space. Typically, this is called executing in process context, as opposed to IRQ
context. When a kthread blocks, if it was in process context, it saves a reference count on
the process. In that sense, a given kthread temporarily belongs to a process. However, when
the syscall is complete, that relationship ends, and the kthread reverts to merely handling
traps and interrupts. If a process yields a core, the kthread remains and will service other
syscalls on behalf of whichever new process runs on that core.

System call handling code does have one issue: after a kthread blocks and control returns
to the process, later the kthread will unblock, complete its call, and unwind its stack. When it
does so, it must not “pop” the original user context that trapped and return again, since that
context was already restarted. The solution is for all trap handlers, and interrupt handlers
too, to not return at all. Instead, all of these low-level routines call common functions that
figure out what a core should do; this is smp idle() and proc restartcore(). On trapping
into the kernel, the currently running user context is saved in per-cpu data, so that it can
be restarted independently of any kthread operations. The job of smp idle() is simply to
figure out if there is a user context and restart it, as well as handling any routine kernel
messages, and if not, to halt the core.

Synchronization Methods

Akaros has a variety of synchronization primitives, including busy-waiting and sleeping meth-
ods, as well as some less-common tools. Basic familiarity with them is necessary to under-
stand how MCPs are designed and implemented.

CHAPTER 3. THE BASICS OF THE MANY-CORE PROCESS AND AKAROS 43

For busy waiting, Akaros uses typical spinlocks and the obligatory “IRQ-save” versions,
which disable interrupts before grabbing the lock. It is necessary to disable IRQs before ac-
quiring a lock that may be grabbed by an interrupt handler to prevent deadlock. Otherwise,
an interrupt handler could interrupt a lock holder and then spin indefinitely in a circular-wait
scenario, since the lock holder implicitly waits for the interrupt handler to return.

Akaros also uses the kref pattern for reference counting, which is used heavily in Linux[14].
Krefs are used to reference count objects within the kernel. The typical pattern is that a
certain clean-up routine is executed when the last reference is dropped and the refcount
hits zero. Although there are many more details for krefs, the cleanup pattern is the most
relevant to MCPs.

Akaros has a custom synchronization pattern I call post and poke. Post and poke is a
wait-free[37] way (no spinning or blocking) to make sure some code is run, usually by the
calling core, but potentially by any core. Under contention, every caller just posts work,
and one core will carry out the work. Callers post work somewhere, the meaning of which is
particular to their subsystem, then set the function pointer in struct poke tracker, and
finally call poke(). For example, posting work could be appending an item to a queue.
Once poke() returns, the function either has run or is currently running somewhere else.
The function pointer is not run concurrently with itself; it can be assured of single-threaded
behavior. The guarantee is that the function will run at least once when poke() is called,
so that the posted work is present for at least one run of the function. In the future, poke()
could send a kernel message to an LL core to ensure the work is done somewhere, but not
necessarily on the calling core.

The code for poke() is relatively simple, except for the memory barriers. Akaros has a
few types of memory barriers, such as wmb() (write), cmb() (prevents compiler reordering),
and wrmb() (write then read, preventing RAW hazards). These barriers are architecture
dependent. For instance, on x86, wmb() and rwmb() are just a cmb(), while both are full
hardware memory barriers on RISC-V. Some, but not all, atomic operations provide a hard-
ware memory barrier.

1 void poke (struct poke t racke r ∗ t racker , void ∗ arg)
2 {
3 atomic s e t (&tracker−>need to run , TRUE) ;
4 /∗ w i l l need to loop r ep ea t e d l y i f someone e l s e keeps po s t i n g work ∗/
5 do {
6 /∗ want an wrmb() btw need to run and i n p r o g r e s s . the atomic swap
7 ∗ prov ide s the hardware mb, so we need a compi ler b a r r i e r . ∗/
8 cmb() ;
9 /∗ poke / make sure someone does i t . i f we ge t a TRUE (1) back , someone

10 ∗ e l s e i s a l r eady running and w i l l d ea l wi th the pos ted work . ∗/
11 i f (atomic swap(&tracker−>run in p rog r e s s , TRUE))
12 return ;
13 /∗ c l e a r the ’ need to run ’ , s ince we ’ re running i t now . new users w i l l
14 ∗ s e t i t again . t h i s wr i t e needs to be wmb() ’ d a f t e r i n p r o g r e s s . the
15 ∗ swap prov ided the HW mb() . ∗/
16 cmb() ;

CHAPTER 3. THE BASICS OF THE MANY-CORE PROCESS AND AKAROS 44

17 atomic s e t (&tracker−>need to run , FALSE) ; /∗ no i n t e r n a l HW mb ∗/
18 a s s e r t (t racker−>func) ;
19 t racker−>func (arg) ;
20 wmb() ; /∗ ensure the i n p r o g r e s s wr i t e comes a f t e r the run again . ∗/
21 atomic s e t (&tracker−>run in p rog r e s s , FALSE) ; /∗ no i n t e r n a l HW mb ∗/
22 /∗ i n p r o g r e s s wr i t e must come be f o r e need to run read ∗/
23 wrmb() ;
24 } while (atomic read(&tracker−>need to run)) ;
25 }

Post and poke is not necessarily novel; it is merely a useful pattern I used on a few
occasions, both in the kernel and in userspace. It is lock-free and wait-free and should scale
relatively well: under contention, most members only do one write and one read. It embodies
a principle I have found very useful in developing a parallel OS: make spurious messages
harmless. If messages, whether they are interrupts, pokes, or events, are indications to look
elsewhere to do work, then it is okay to send numerous messages to accomplish a single task.
Since messages can get lost or delayed, we can just send another message without fear of the
underlying work being done more than once — the messages are idempotent. This technique
pops up all over the place in Akaros, from the virtual core implementation to event delivery
options. The argument for safe, spurious messages is similar to that of Mesa semantics versus
Hoare semantics for condition variables: Mesa-style condition variables are more flexible and
have simpler invariants[53].

For blocking synchronization, Akaros has the usual semaphores and condition variables.
Rather simply, when these calls sleep, the calling kthread blocks. Additionally, Akaros sup-
ports a form of Plan 9’s rendezvous[86]. Rendezvous captures a common condition variable
pattern: sleep, if a function pointer (an argument to rendez sleep()) returns false. Another
thread or an interrupt handler can wake the sleeping thread. One difference between Akaros
and Plan 9 rendezvous is that Akaros uses Mesa semantics for the condition, while Plan
9 uses Hoare semantics. Specifically, Akaros’s rendez sleep() is: sleep while a function
returns false, and Plan 9’s is: sleep if a function returns false.

Abortable System Calls

Operating systems want some way to abort a system call. For a common example, applica-
tions may want to cancel or timeout a networking operation. In OSs with 1:1 threading and
synchronous system calls, the typical mechanism for this is to send a signal to the thread.
For instance, POSIX read() calls can be interrupted with a signal, and the read returns
with errno set to EINTR. Typically, code will set an alarm to signal itself before performing
a blocking call that it may wish to timeout. In systems with asynchronous calls, usually
there is some instruction or API to cancel a call. For instance, in VMS, QIO calls can be
aborted with an ABORT command[38]. Akaros also needs to abort system calls, and given
its asynchronous syscall interface, signals are not sufficient.

Before going into details on Akaros’s abortable system calls, we need to know about error

CHAPTER 3. THE BASICS OF THE MANY-CORE PROCESS AND AKAROS 45

handling in Plan 9. Plan 9, and now Akaros, has an error handling mechanism based on
setjmp() and longjmp(), whereby a context is saved and later jumped to when there is an
error. A common usage:

1 {
2 some data = a l l o c d a t a () ;
3 i f (waserror ()) {
4 /∗ t ake t h i s branch in case o f e r ror ∗/
5 k f r e e (some data) ;
6 /∗ jump to the prev ious waserror () in the c a l l graph ∗/
7 nex t e r r r o r () ;
8 }
9 /∗ any o f t h e s e f unc t i on s can c a l l e r ror (‘ ‘ some error message ’ ’) ,

10 ∗ which w i l l longjmp to the waserror ’ s i f branch at l i n e 4 ∗/
11 some funct ion () ;
12 ano the r func t i on () ;
13 /∗ pop the waserror from l i n e 3 from the error s t a c k ∗/
14 poperror () ;
15 k f r e e (some data) ;
16 }

Code written with waserror() and error(), which includes all of the syscall paths related to
networking and file systems, can handle any error from deeper in the call graph, can restore
invariants, and ultimately return the error message to a syscall. In this manner, error() is
similar to the UNWIND exception in Mesa[53], and waserror() is the programmer’s way to
install an UNWIND handler.

In Akaros, any syscall with a kthread sleeping in a rendez sleep() is abortable. When
this happens, rendez sleep() itself throws a “syscall aborted” error, which trickles all the
way back to userspace. The only rule for abortable syscalls is that code needs to restore
invariants in waserror blocks before calling sleep, same as handling any error generated from
the code paths. Cleanup involves freeing memory and unlocking semaphores, for example.

However, arbitrary sleeps in Akaros are not abortable, yet. For instance, if a kthread
is waiting on an arbitrary semaphore, we do not allow an abort. The reasoning is that the
kthread will eventually acquire the qlock; the code is not usually waiting on external sources
to wake up. That is not completely true — a kthread could be blocked on a semaphore, and
the semaphore holder could be abortable. In the future, I could build some sort of “abort
inheritance”, usable by privileged applications. (There is a danger of aborting another pro-
cess’s kthread). Alternatively, we could make semaphores, called qlocks in Plan 9, abortable
too, though that would require rewriting all qlocking code to be unwindable. In short, code
written with rendez sleep() expects the sleep to be able to throw an error.

The rules for writing code that will sleep was easy. The harder part to syscall aborting
is safely waking a kthread. There are several layers to go through from a thread or syscall
in userspace down to the condition variable a kthread is sleeping on in the kernel. Given
a user thread, find its syscall. Given a syscall, find its kthread. Given the kthread, find
the condition variable. During all of these lookups, syscalls complete concurrently, kthreads

CHAPTER 3. THE BASICS OF THE MANY-CORE PROCESS AND AKAROS 46

get repurposed for other syscalls, and condition variables could be freed. The memory for
syscall structs themselves are often on the stacks of user threads, and when they complete,
the memory is both gibberish and potentially in use.

Ultimately, I decided on a system of safe abort attempts, where it is harmless to be
wrong with an attempt. Instead of dealing with the races associated with memory freeing
and syscalls completing, the aborts will only be attempted if it is safe to try. This is another
example of the poking principle: make spurious messages harmless. Since the contract
between the kernel and the user is the syscall struct, then this struct should be involved
in the cancellation of the syscall. When userspace wants to abort a syscall, the kernel uses
that pointer as a key for a lookup. Only if the lookup succeeds is it safe to dereference the
pointer or otherwise cancel the syscall.

All abortable kthreads/sleepers/syscalls are on a per-process list, indexed by syscall struct
pointer. They are only on the list when they are abortable, meaning the condition variable in-
side the rendezvous can be poked. The invariant is that when they are on the list, they are in
a state that can be safely aborted: the kthread is working on the syscall, it has not unwound
its call graph, etc. The details of this protection are sorted out with reg abortable cv()

and dereg abortable cv(), since it is really the condition variable that the kernel is try-
ing to find. From the kernel’s perspective, nothing bad can happen if you ask to abort an
arbitrary syscall for a particular process.

The actual abort takes the “write/signal, then wake” approach. The aborter tracks down
the kthread via the lookup, the success of which guarantees the sleeper is sleeping, marks the
syscall’s flag with SC ABORT, and attempts to wake the kthread with a condition variable
broadcast. The per-process list is protected by a lock: some form of synchronization is
required. The benefit to this approach is that this penalty is only paid on when a kthread
is blocking: a relatively expensive operation. It is only during this time, when a kthread
and its syscall are on a list, that an external observer can be certain of a mapping between
kthread and syscall. By comparison, in 1:1 models, kernel threads are implicitly working
on their particular syscall: one that has no struct and whose commands were passed via
registers during a trap.

On the user’s side, applications with user threads that block in userspace on syscalls
can set an alarm to cancel the syscall for the user thread, similarly to requesting a signal.
Userspace has an alarm service which allows them to run arbitrary handlers after a certain
amount of time, managed by the virtual core code. Likewise, user threads can block on
system calls, which I discuss further in Section 4.4. Additionally, userspace can set an alarm
and issue multiple syscalls within its alarm’s timeout window; the alarm will cancel whichever
syscall is currently running.

There are downsides to the “safe abort attempts” approach. The system can only abort
syscalls when they are at a certain point; if they are not currently sleeping, the call will
fail. Technically, the abort could take effect later on in the life of a syscall. Related to
this limitation, userspace must keep attempting to cancel a syscall until it succeeds, if it
so chooses. It may also be told an abort succeeded, even if the syscall actually completes.
Ultimately, we cannot “fire and forget” our abort attempt. These are not huge problems,

CHAPTER 3. THE BASICS OF THE MANY-CORE PROCESS AND AKAROS 47

and they are less of a problem than my older approaches.
For instance, the original idea I had was for userspace to flag the syscall (flags |=

SC ABORT;). It could do this at any time. Whenever the kthread was going to block in an
abortable location (e.g. rendez sleep()), it would see the flag and abort. It might already
be asleep, so we would also provide a syscall that would “poke” the kthread responsible for
some syscall pointer, to wake it up to see the flag and abort. The first problem was writing
to the syscall struct flags. Unless we know the memory is actually the syscall we want, this
could result in randomly writing to memory (such as a user thread’s stack). I ran into similar
issues in the kernel: one cannot touch a kthread struct unless you know it is the kthread you
want. Once I started dealing with the syscall to kthread mapping, it became clear I would
need a per-process lookup service in the kernel, which acts as a way to lock a reference to the
kthread. The memory safety problems, both for the kthread struct and the syscall struct,
are all solved by synchronized lookups to ensure safety.

As a smaller note, I considered registering every kthread with the process right away,
specifically, when we link the syscall to the kthread, for the syscall-to-kthread lookup service.
This would be expensive, since every syscall pays the lookup tax. We want syscalls to be
fast, but the infrequent aborts can be expensive. The obvious change was to only save the
mapping for only the abortable kthreads. The tradeoff is that we cannot flag syscalls for
aborting unless they are in an abortable state. This approach, the one I settled on, requires
multiple pokes by userspace. In theory, userspace needs to deal with that scenario anyways,
in case they attempt to abort before the kernel can register in the first place.

As an example of how powerful the cancellation interface is, consider an application that
wants to time out its reads and writes. Kevin Klues wrote a simple webserver in C called
Kweb, which we ported from Linux to Akaros. The Linux port requires a variety of epoll
calls, while loops, and non-blocking socket options. The Akaros port merely sets an alarm
and issues the normal reads and writes.

It is also worth noting that many rendez sleep() calls actually return right away. For
instance, this is common if some data is already in the queue, or whatever the condition
is that we want to conditionally sleep on is true. Since registering the kthread and syscall
is a little bit heavier than just locking the condition variable, I use another common code
pattern: check, signal, check again. I frequently use this technique with shared-memory
synchronization throughout the kernel, such as with event delivery. The initial check for
some condition is an optimization, and if it is true the code can skip the heavier-weight
synchronization operation. When the condition is false, then we need to fall back to the
“signal, check again”, which provides the true synchronization, at a cost. This pattern is
similar to the “test, then test and set” approach to spinlocks, which is when all contenders
read the lock first, and only attempt a cacheline-invalidating write if they think they can
grab the lock.

48

Chapter 4

Life for a Many-Core Process

In the previous chapter, I gave an overview of the MCP, but held off on many details. How
does the kernel create and manage MCPs? What does userspace do when it finally gets cores?
What are the benefits of dedicating cores to userspace? In this chapter, I discuss how the
kernel and user work together to build and manage MCPs, and how userspace libraries can
operate within the MCP abstraction. Finally, I will present the results of microbenchmarks
related to performance isolation and user-level threading.

4.1 Procinfo and Procdata

Before diving in to how MCPs are made, it will help to know a little about the kernel
interface. Since userspace is involved in the details of managing MCPs, there is a wide
kernel interface with many rapidly changing parameters. A critical part of this interface
is a pair of shared-memory regions called Procinfo and Procdata, both mapped into the
user’s address space at known addresses. Procinfo is read-only for the user, and Procdata is
read-write. The MCPs use of a shared-memory region is similar to Psyche, which stands to
reason: both systems provide a virtual processor.

The shared-memory interface has the obvious benefit of faster communication; it takes
much less time to update a memory location than to perform a syscall. There are subtler
benefits as well. Syscalls are convenient ways for userspace to initiate communication with
the kernel, but it is more difficult for the kernel to communicate with the user. Upcalls
are one such mechanism, but they can be as expensive as a syscall, if not more so, and
upcalls can interfere with an application since they occur when the kernel wants, not when
the user wants. Unlike syscalls or upcalls, shared-memory communication is bidirectional
and requires no control transfer. The lack of control transfer means the kernel on one core
can communicate with a process running on another core. Ultimately, both the user and
the kernel can frequently update values without interfering with one another. Additionally,
many of the types of information are only important at certain times; they are “update
frequently, read rarely”. For instance, the only time the kernel cares if the user enables

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 49

software interrupts is when the kernel wants to send an interrupt. For all of these reasons,
a shared-memory interface is very useful for the implementation of an MCP.

4.2 Virtual Cores

An MCP is made up of virtual cores (vcores), similar to virtual processors in Psyche, which
are pinned to physical cores (pcores). These physical cores are designated as CG cores
(coarse-grained) by the kernel scheduler. The mapping of virtual cores to physical cores is
shared in Procinfo. The actual virtual core has the following fields:

struct vcore {

uint32_t pcoreid;

bool online;

uint32_t nr_preempts_sent;

uint32_t nr_preempts_done;

uint64_t preempt_pending;

uint64_t resume_ticks;

uint64_t total_ticks;

};

These virtual cores are laid out in an array in the MCP’s Procinfo called the vcoremap. At
any moment, userspace can determine if a virtual core is online or not, meaning mapped
to a physical core, and on which physical core the vcore is running. Likewise, in Procinfo
there is a pcoremap, which is a reverse mapping from physical cores to virtual cores, though
a process can only see mappings for its own vcores. The tick counters accumulate how much
time a vcore is online, so that userspace can run a virtual clock, if it so desires.

All virtual cores are not always running; that is impossible to guarantee generally for all
processes on a system with shifting priorities. Instead, userspace can tell which vcores are
running or not. When virtual cores are running, the physical core is completely dedicated
to that virtual core. There is no per-core kernel runqueue, let alone time slicing. The kernel
routes device and timer interrupts to LL cores, so the virtual cores receive no unexpected
interrupts.

At this point, a virtual core sounds like a thread or process, albeit one with an interference-
free and transparent scheduling policy. However, the nature of a virtual core is that it acts
like a processor, and not a thread, in that the kernel can deliver a form of software interrupt.
The code that runs on a virtual core is more like an operating system, even though it runs
in user mode, and can disable these interrupts.

The defining feature of the virtual core is vcore context, which is a layer of software
analogous to interrupt context in OSs. Its primary purpose is for event handling, thread
scheduling, and other user-level scheduling operations. For a better understanding of vcore
context, let us look at a structure in procdata corresponding to the vcore:

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 50

struct preempt_data {

struct user_context vcore_ctx;

struct ancillary_state preempt_anc;

struct user_context uthread_ctx;

uintptr_t transition_stack;

uintptr_t vcore_tls_desc;

atomic_t flags;

int rflags;

bool notif_disabled;

bool notif_pending;

struct event_mbox ev_mbox_public;

struct event_mbox ev_mbox_private;

};

These fields are writable by userspace and are sufficient to implement interrupt handling
mechanisms. First, note that userspace tells the kernel its stack pointer and TLS (thread
local storage) descriptor. The kernel does not trust the user, therefore it verifies the addresses
are user addresses. Every time the kernel starts a vcore or puts it into vcore context as part
of a software interrupt, the kernel initializes and runs a user context. The context uses the
stack pointer and TLS from the vcore’s preempt data structure. The program counter is
taken from the program’s ELF start point, called start in glibc. The start code eventually
calls an entry function called vcore entry().

The stack is reused, from the top, every time the vcore reenters vcore context. Clearly
this means that userspace needs a way to disable this behavior. The act of the kernel placing
a vcore into vcore context is called a notification, equivalent to hardware pushing the kernel
into interrupt context. Userspace can disable notifications by setting the notif disabled

flag, equivalent to the kernel executing an instruction to disable interrupts. Whenever the
kernel would like to notify a vcore, it sets the notif pending flag, regardless of whether
or not notifications are disabled. The kernel then only puts the vcore into vcore context if
notifications are enabled.

The purpose of notif pending is to prevent missed messages, or other circumstances
which require the vcore to run, when enabling notifications. As far as the kernel is concerned,
a vcore is in vcore context only if notifications are disabled. There are two ways out of vcore
context: running a user thread (called a uthread in Akaros) or yielding to the kernel. The
code for both takes special precautions to clean up the vcore, enable notifications, and then
check notif pending. If the flag is set, then vcore context is reentered. In the case of
yielding to the kernel, sys proc yield simply returns.

Starting a uthread is slightly trickier: once notifications are enabled, the vcore’s stack
could be reused by a subsequent notification. The solution here is to use the uthread’s
stack. The code that starts a uthread’s context (called “popping”) uses the space below
the uthread’s current stack pointer for bookkeeping, and then changes to the uthread stack
before enabling notifications. If a new notification arrives, the code that is interrupted,

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 51

which will restart later, is the popping code that restarts the original uthread context. If
notif pending is set, which is checked after enabling notifications, the popping code will
issue a system call to ask the kernel for help in restarting vcore context. To do so, the kernel
will simply deliver a notification to the vcore. The uthread context that was being restarted
is saved into procdata and the kernel restarts the vcore at its entry point.

One concern with using the stack below a uthread’s stack pointer is that the application
may be using that space, depending on the ABI. The code that pops a uthread’s context
assumes that memory below the stack pointer is scratch space. Application code must be
compiled such that it does not save variables below the stack pointer. For instance, when
compiling 64 bit x86 code, the “red zone” must be disabled.

Ultimately, a vcore will not leave vcore context permanently while notif pending is set,
ensuring the vcore code does not miss a message. The problem of missing messages while
leaving vcore context is analogous to Saltzer’s “wakeup waiter” problem[94], which covered
the race conditions associated with a process sleeping while a concurrent signal arrives that
wakes up the process. To complete the analogy, the notif pending flag is Saltzer’s “wakeup
waiting” switch — a flag that alerts the sleeping or exiting code that a message arrived since
the last time the flag was cleared.

The vcore preempt data struct also has storage for two contexts, each of which can hold
the general purpose registers for a context. The two slots are used in different circumstances.
Whenever the kernel notifies a vcore, meaning it places the vcore into vcore context, it first
saves the previously running uthread into the uthread ctx. The scheduler code, running in
vcore context, can then save the context into the uthread struct or just restart it directly.
The second context is for saving vcore context and is only used when the kernel preempts a
core. When the kernel starts a vcore, it either builds a fresh vcore context or uses the saved
context, based on notif disabled. Simply put, if the core was in vcore context, which
means notif disabled is set, and is interrupted, it will restart exactly where it left off.

Another purpose of vcore context is to handle uthread faults and traps. When there is a
trap, the kernel attempts to handle it. If it cannot, the trap is reflected back to userspace.
The kernel passes the trap information in the uthread context and restarts the vcore in
vcore context. One limitation to this model is that vcore context cannot have unhandled
faults. Although this is easy for most faults, such as dividing by zero, page faults are more
difficult. Vcore context is not allowed to have any hard page faults; the kernel will kill the
entire MCP otherwise. Hard page faults are those that the kernel cannot resolve without
blocking. Page faults on anonymous memory are soft faults, but accesses to mmapped files,
such as code and data segments of a binary, can be hard faults. For this reason, low-level
MCP library code pins all binaries. The extra requirement of userspace to manage memory
is part of Akaros’s memory and resource management philosophy: more opportunities for
optimization, but more responsibility.

A final detail to note about vcore context is in how it compares to Psyche’s software
interrupt handling. In Psyche, there is an interrupt table of function pointers, and the
kernel builds the user context to particular functions based on the interrupt number. Vcore
context adds a level of indirection, where userspace can do whatever it wants, whether that

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 52

is handling events, performing scheduler operations, or simply nothing at all.
A final detail to note about vcore context is in how it compares to Psyche’s software

interrupt handling. In Psyche, there is an interrupt table of function pointers, and the
kernel builds the user context to particular functions based on the interrupt number. Vcore
context adds a level of indirection, where userspace can do whatever it wants, whether
that is handling events, performing scheduler operations, or simply nothing at all. The
latter option is arguable the most important; spuriously entering vcore context is harmless,
which is in accordance with my design patterns. As I mentioned before, allowing spurious
messages allows for greater flexibility in solving synchronization problems. Additionally,
vcore context’s status as an intermediate layer, instead of being just the execution of a
function in a table, allows for other uses. For instance, user threads can easily enter and exit
vcore context by carefully setting and clearing notif disabled and checking notif pending,
analogous to kernel code disabling and enabling interrupts. One example where a uthread
must disable notifications is when acquiring a spinlock that can be acquired from vcore
context. If notifications are not disabled, the uthread holding the lock could be interrupted
and the vcore could try to acquire the lock, resulting in a deadlock. Kernel code must take
the same precaution when acquiring locks that are also acquired in IRQ handlers.

4.3 MCPs from Creation to Entry

Running simple user code on dedicated cores can be done quite easily; send a kernel message
or IPI and pop into userspace. It is more difficult to allocate cores to processes while also
dealing with processes making system calls, yielding cores, and changing their allocation re-
quests. To make things even more difficult, add in multiple processes with different priorities
and the ability for the kernel to preempt cores. Suddenly giving out cores is not as simple,
and there are a few subtle design points that can vastly improve the implementation. At
all levels of existence, managing MCPs requires coordination between the kernel and the
process. Let us start at the beginning.

Creation and Initialization

MCPs are just processes with extra modes, interfaces, and bookkeeping. Both MCPs and
single-core processes (SCPs) use the same process structure, and for many parts of the kernel,
such as the memory manager, there is little difference between the two. MCPs actually start
out as SCPs, which gives userspace time and flexibility to prepare itself to be an MCP.

In contrast to the fork-exec model, all processes in Akaros are spawned in an unrunnable
state with a sys proc create() call, which takes a program as its argument. Akaros actually
has fork and exec syscall, only to temporarily support legacy applications. The parent
process can pass file descriptors, if it so chooses. In the future, Akaros will have syscalls for
the parent to set up shared memory regions with its child, or otherwise affect its address
space. When the parent is ready, it calls sys proc run to make the child process runnable.

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 53

Spawning processes instead of forking is more appropriate in a multithreaded world, as
pointed out by Topaz[67] and discussed in Section 2.2. Furthermore, explicitly passing
references, such as file descriptors, to children avoids various security concerns associated
with forking while concurrently opening files in another thread.

Once a process is created in SCP mode, it is up to userspace to perform low-level initial-
ization. Typically, the first time a program attempts to make a multithreaded function call,
such as pthread create(), the user-level scheduler library will initialize itself and switch to
MCP mode. The bare minimum initialization required is to allocate stacks and TLS regions
for vcore context, for each vcore that the process will request. Additionally, the scheduler
will usually create a uthread structure to track the initial SCP thread that starts at main(),
referred to as “thread 0”. Optionally, the 2LS can initialize event queues and any other
scheduler-specific data structures.

All initialization is supported by helpers in Uthread and Vcore libraries, which are part
of Parlib. Parlib is a library that provides interfaces for user-level schedulers and helpers
for common operations related to the Akaros kernel interface. Every binary on Akaros links
with Parlib, in a way similar to how programs in Linux link with a C library. All second-level
schedulers inherit from and link against uthread code. For example, Akaros has a pthread
scheduler that is built on top of uthreads, and struct pthread’s first element is a struct

uthread. In this manner, a pthread in C code can be cast to a uthread — a common
technique for object-oriented C code.

When the user-level scheduler is finally prepared, it asks the kernel to switch it to MCP
mode. Changing to an MCP is a one-way deal; the process now runs on CG cores and is
responsible for handling its own faults, scheduling threads, and handling events. Up until
this point, the kernel could deal with many of these details. For instance, process wakeup
and syscall completion code is very similar, regardless of whether a process is an MCP or
an SCP. The kernel often treats an SCP as if it has only one vcore (vcore 0), which it uses
for saving contexts and signalling notifications. There are certain steps SCPs can perform
before becoming a full MCP to take additional control over its environment. Even SCPs
eventually initialize themselves enough to perform basic operations in vcore context. For
example, POSIX signals are delivered as events, and legacy SCPs need signals. However, this
initialization only occurs after the majority of the C library initialization occurs: specifically,
after ld.so mmaps the program binary and shared libraries. Until userspace performs any
initialization, the kernel manages flags such as notif disabled.

Allocating Cores to an MCP

One of the more distinctive aspects to being an MCP is that the process now runs on
dedicated CG cores. By contrast, SCPs are typically time-sliced on LL cores; recall that
in existing OSs, all cores are similar to LL cores, with per-core schedulers, interrupts, and
time-slicing. The kernel manages CG cores with kernel messages, which can be sent from
both remote cores and even a core to itself. At a very basic level, to give a physical core to

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 54

a process, the kernel maps an unused vcore in the vcoremap, then sends a message to the
physical core. The basic MCP management kernel messages are:

• startcore: Run a process’s vcore on a physical core. If the vcore was previously
interrupted in vcore context, restart that context. Otherwise, start a fresh vcore con-
text.

• notify: If the process’s vcore is not in vcore context, save the uthread context in
procdata and start a fresh vcore context.

• death: Stop running whatever context was previously running, discard the context,
and prepare to idle the core.

• preempt: Save the running context in the appropriate slot in procdata, and prepare
to idle the core.

• set cur ctx: Helper to set the current context, used by sys change to vcore(),
which is basically a kernel-assisted context switch between vcores.

Older versions of these functions directly altered the course of the kernel’s execution.
For instance, startcore used to take a context and pop directly into userspace. The
removing functions preempt and death would directly call code to clear the page table
base register and just halt the core (abandon core() and smp idle(), respectively). None
of these functions returned, so the type of the kernel messages had to be routine. As a
reminder, routine kernel messages are executed when the kernel has finished its work, such
as a syscall or IRQ handler, and it is safe to not return; see Section 3.2 for more details.
Likewise, there used to be a few non-KMSG functions that did not return, such as proc run()

and proc destroy(), for similar reasons. Ultimately, having these functions and KMSGs
led to various complications, especially involving scenarios with vcores being preempted
and restarted concurrently. As another example, functions like proc destroy() were in
situations where they would need to check messages and possibly not return if the core they
were running on was a target of a death message.

All MCP core and context management functions, which apply to a specific physical
core’s local state, now operate on a set of per-cpu variables. Instead of taking direct action,
like popping into userspace, these functions set flags and operate on contexts so that the
kernel will later perform the operation requested. Separating the functions from the final
actions is a useful level of indirection. There are a series of relevant per-cpu kernel variables
at play here:

• struct proc *owning proc: Tracks which process owns the core. If the core is in
userspace, then this is the process that is running. If the core is in the kernel, then this
is the process that will run when the kernel finishes its work and returns to userspace.

• int owning vcoreid: Tracks the vcoreid of owning proc that will run on this physical
core.

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 55

• struct user ctx *cur ctx: The user context for the current vcore. The pointer
usually points to storage space in the per-cpu info struct; the user context is copied
into this location during entry into the kernel. The current context is both the context
that trapped into the kernel and the context that will be launched/popped when the
kernel returns to userspace.

• struct proc *cur proc (a.k.a., current): Tracks the process whose address space the
kernel currently has loaded on the core. The current proc could differ from the owning
proc, and it is usually used by syscall code to determine which process is executing.

With the indirection provided by these variables, startcore does not directly run a par-
ticular context. Instead, it copies the context into cur ctx, and later when the kernel calls
smp idle(), the kernel will pop the context and enter userspace. Importantly, the kernel
only pops to userspace after handling all kernel messages. If there are a series of messages,
such as a startcore, followed by a preempt and then a startcore for another process,
all of these commands will operate on the per-cpu variables, and the first process would never
actually start up. Additionally, the physical core receiving the messages could also be in the
middle of a syscall that affects the current context, such as yielding the current vcore.

The startcore-preempt-startcore example also shows why ordered, reliable messages are
important. If those messages are delivered out of order, all sorts of havoc would ensue.
In early versions of Akaros, I tried using interrupt vectors for each of the message types;
that approach clearly fails due to the lack of ordering. The entire reason for developing the
kernel messaging subsystem, described in Section 3.2, was to provide the reliable, ordered
messaging needed for MCP code.

As mentioned earlier, old versions of the MCP management KMSGs did not return.
KMSGs that do not return must be routine, meaning that they only run when the kernel
can handle not returning: it has no invariants to restore, locks to unlock, memory to free, or
work to complete. However, with the change to MCP kernel messages so that they always
return and only modify per-cpu variables, do those kernel messages still need to be routine?
The current process pointer does not matter either — kernel messages only change the
owning process, not the current process. However, process management messages do need to
be routine due to other invariants. I use routine messages, instead of immediate ones that
take effect in interrupt context, so that syscalls and trap handlers can be assured that the
vcoreid and current context does not change in the middle of an operation. Otherwise, it is
possible for the user context that trapped into the kernel to be preempted and restarted on
another core concurrently. Or if there was a preemption of the original vcore and a startcore
for another vcore, a syscall could be confused about which context it should operate on.
When using routine messages, syscalls that touch the vcoremap still need to be careful, but
basic operations such as emulating the rdtscp instruction on x86 or a debugging syscall that
returns the vcoreid all just work without needing to worry about concurrent preemptions. In
short, deciding between an immediate or a routine message based solely on whether or not
the message returns is insufficient — all invariants must be considered. It is critical to not

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 56

use an immediate message that could violate an invariant. In this case, syscalls that have
not blocked expect their vcoreid and current trapframe to not change.

Another per-cpu variable worth mentioning is owning vcoreid. In early implementations
of Akaros, code running on a core would simply look at the pcoremap, which maps physical
cores to virtual cores, to determine the vcoreid. The problem is that concurrent preemptions
may zero the pcoremap. Without owning vcoreid, the unmapping of the pcoremap had to
wait until the preempt message runs on the target core. This requirement could lead to
circular wait scenarios with the kernel scheduler. There is a potential deadlock where kernel
scheduler code runs on a core that gets preempted and then attempts to restart that vcore
somewhere else; the scheduler itself must run the handler to complete the preemption. There
are a few other issues exposed by using the vcoremap directly, which require an understanding
of how preemption works, discussed in Section 6.1. Preempting in this manner is a mess, and
the simple fix is owning vcoreid — a variable which makes sense in hindsight considering
its similarity to owning proc: together they describe what runs on a core. Note this means
the vcoremap is not always up to date, and userspace could be confused. To deal with this
concern, let us revisit allocating cores to a process.

When the kernel wants to give a physical core to a process, it picks an available vcore,
writes the mapping into the vcoremap and pcoremap, and sends a startcore message.
All modifications to the vcore mapping are protected by a seq counter (pronounced “seek”).
Seq counters are a common technique, like spinlocks, for read-mostly objects, where multi-
ple readers can read concurrently with a single writer. Before and after writing, the writer
increments the counter such that while a write is in progress, the counter value is odd. Read-
ers check the counter before and after reading, and they repeat their read operation if the
counter is either odd or not the same during both reads. In this manner, readers can atomi-
cally perform multi-word reads. In the case of the kernel changing the vcoremap, userspace
can tell that a change is in progress and wait until the kernel is complete. Otherwise, there
could be moments of inconsistency, such as the vcoremap disagreeing with the pcoremap.

To pick an available vcore, the kernel consults the per-process vcore lists: online, bulk-
preempted, and inactive. The online vcores are those vcores currently mapped and executing
user code, or soon to be executing and with a kernel message in-flight. The distinction
between bulk preempted and inactive help with preemption and event delivery, discussed in
Section 6.1. For our purposes now, the kernel can just take a vcore from one of these lists,
preferring bulk preempted.

When it comes time to send the kernel messages to start the vcore, the kernel needs to
deal with reference counting. As mentioned earlier, processes use krefs to keep the process
alive until its last external reference is freed. Reference counting is more difficult with MCPs
than with 1:1 threading models. In 1:1 models, the process is just one kernel thread with its
userspace component, but with MCPs, there is one kernel object for the process and code
using that object running in parallel. The various per-cpu variables, such as cur proc and
owning proc each count as a separate reference. In case it is not clear, a process cannot be
freed while a core is still running in that process’s address space and using its page tables. To
avoid a flurry of cache-line contention on the process’s kref variable, the kernel preemptively

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 57

ups the reference count by two for each new core allocated to the process. In the unlikely
case that this was too many, such as if a startcore was sent to a process that already had
cur proc set correctly, the KMSG handler notices and drops the extra reference.

MCP reference counting can be tricky, primarily due to functions that do not return. If
a function takes a reference counted object and does not return, then it must decrement the
reference count. In the old versions of the codebase, functions like proc destroy() may or
may not return, the uncertainty of which was a programming hassle. Callers needed to wrap
calls to these functions with increfs and decrefs. Reducing the number of MCP functions
that might not return simplifies reference counting greatly. The major change to reduce the
number of these functions was the layer of indirection between MCP management KMSGs
and actions like actually popping into userspace. Again, this relatively simple technique
greatly simplifies the implementation of the MCP management code. Currently, there is only
one function that takes a process reference and might not return: proc yield(). Yielding
a vcore might fail and return to userspace if notif pending is set, which is how the kernel
enforces the policy that userspace does not leave vcore context when a notification is pending.

Finally, the kernel has picked a physical core, mapped it to a free vcore, properly reference
counted the MCP, and sent the startcore kernel message. When userspace starts up on
a CG core, it will start in vcore context. If the vcore was previously in vcore context
and preempted, which is detectable by inspecting notif disabled, that context is simply
restarted. Otherwise, the kernel initializes and starts a fresh vcore context, regardless of
whether or not a uthread was running previously. An alternative approach, and the one
I originally pursued, was to restart whatever context was previously running, either vcore
context or not. In this manner, a preemption and a restart would act like a time-slice in the
usual OS process management style. There are two drawbacks. First, userspace is responsible
for its scheduling and resource management; if the kernel stops and restarts a vcore, userspace
should get a chance to do something about it — perhaps adjust its scheduling policy. More
importantly, userspace needs a chance to interpose on the automatic restart of a previously
preempted context, as explained in greater detail in Section 6.3. Regardless, userspace is
finally in control of its vcore, and can schedule threads or do whatever it likes.

4.4 User-level Scheduling

Once the kernel granted gang-scheduled cores to an MCP, it is up to userspace to determine
what to do with its virtual multiprocessor. Userspace is aware of which vcores are online, and
it must choose what code runs where. Many applications will want some form of user-level
threading, and the Uthread library contains the infrastructure and abstractions common to
most all thread-scheduling libraries.

Applications do not need to use the Uthread library, nor do they even need to use threads
at all. Threads are relatively cheap, but an application could use the MCP environment to
run an event-driven program, managing events and issuing asynchronous syscalls directly to
the kernel. If an application chooses this route, I would consider still using uthreads and

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 58

a very simple scheduler with one uthread per vcore, since the uthread code does so much
heavy lifting for the application.

Connecting User-level Schedulers to Uthreads

At this point in time, the only full-fledged user-level scheduler I wrote is a pthread scheduler,
so I will explain how user-level threading works as a combination of pthread and uthread
code. Let’s start with the basics: the thread structures.

struct uthread {

struct user_context u_ctx;

struct ancillary_state as;

void *tls_desc;

int flags;

int state;

struct syscall *sysc;

struct syscall local_sysc;

void (*yield_func)(struct uthread*, void*);

void *yield_arg;

int err_no;

char err_str[MAX_ERRSTR_LEN];

};

extern __thread struct uthread *current_uthread;

A uthread is little more than its context, including floating point, and bookkeeping. A
uthread’s context may or may not be in the uthread struct; when it runs, the context is in the
processors registers, and when it is interrupted, its context is saved in procdata. Thread-local
storage (TLS) is actually optional for uthreads; specific schedulers can ask for it on a per-
thread basis, though “thread 0”, created by glibc, always has a TLS. Note that a uthread has
err no. When code accesses the POSIX errno variable, for uthreads this uses the variable
in the uthread struct. For vcore context code, errno uses storage in thread-local storage,
as is customary in glibc. All vcore contexts have a TLS, which stores the most important
variable to a scheduler: current uthread. current uthread tracks which uthread runs on
a vcore and can be used by any thread to get a pointer to its thread control block.

Many of the parts of the uthread struct are important, but what is also important is what
is not there. There is no stack in the uthread struct. There is a stack pointer, saved in the
context, but there are no other assumptions about the stack: that is the responsibility of the
specific second-level scheduler that links with uthreads. For example, Capriccio[9] and Go
both use linked stacks, so assuming the stack is a contiguous block with a particular stacktop
would be inappropriate. In contrast, the pthread struct has a stacksize and stacktop:

struct pthread_tcb {

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 59

struct uthread uthread;

TAILQ_ENTRY(pthread_tcb) next;

int state;

bool detached;

struct pthread_tcb *joiner;

uint32_t id;

uint32_t stacksize;

void *stacktop;

void *(*start_routine)(void*);

void *arg;

void *retval;

sigset_t sigmask;

sigset_t sigpending;

};

The uthread struct is the first element of the pthread struct, allowing the casting between
uthread and pthread structs. In this manner, pthreads inherit from uthreads. Pthread code
also handles other thread-related details that may be specific to a particular scheduler, such
as signals and joining. Embedding the uthread struct in the pthread is one manner in which
schedulers interact with uthread code. Another primary way is through an array of function
pointers for scheduler operations called schedule ops. These functions are a collection of
upcalls from uthread code into a specific scheduler.

struct schedule_ops {

void (*sched_entry)(void);

void (*thread_runnable)(struct uthread *);

void (*thread_paused)(struct uthread *);

void (*thread_blockon_sysc)(struct uthread *, void *);

void (*thread_has_blocked)(struct uthread *, int);

void (*thread_refl_fault)(struct uthread *, unsigned int, unsigned int,

unsigned long);

void (*preempt_pending)(void);

void (*spawn_thread)(uintptr_t pc_start, void *data);

};

The most important of the scheduler operations is sched entry(). I will describe the oth-
ers below when they are relevant to particular scenarios or operations. The sched entry()

is the entry point called when a vcore starts up. When a vcore starts, either for the first time
or in response to a notification, it actually starts at glibc’s start symbol, which loads the
vcore’s TLS and calls vcore entry. Unless an application overrides various weak symbols
in glibc, uthread vcore entry executes. In uthread vcore entry, there are various checks
necessary for handling preemption, which I describe later. The remainder is merely a quick

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 60

call to handle events(), followed by calling the 2LS-specific sched entry(). In the case of
pthreads, pth sched entry() runs any previously running current uthread, which would
be the case if a pthread was interrupted for a notification. Otherwise, the pthread scheduler
simply picks a pthread and runs it. Schedulers can customize their sched entry() however
they see fit. Perhaps they use a task bag for their threads or per-vcore runqueues. If there
are no threads to run, application-specific knowledge can determine if a vcore yields and
returns to the kernel or if it spins or halts temporarily if new work is anticipated.

Vcore Context Details for User-level Schedulers

The sched entry() functions are one of many that operate in vcore context. Vcore context
is a low-level environment, and it has rules.

• No code can busy wait on user code without dealing with preemptions, because the
vcore it waits on may be preempted. Code that requires spinlocks should use the PDR
locks, described in Section 6.2. Custom busy waiting code must call cpu relax vc(),
passing the vcoreid of the vcore it waits on, if known, and itself otherwise. The function
cpu relax vc() will periodically ensure the target vcore is online and react accordingly,
discussed further in Section 6.2.

• Once you leave vcore context, there’s no going back. Vcore context code starts at the
top of its stack, every time the kernel starts a fresh vcore (when notifications where
enabled) or a uthread enters vcore context. If vcore context code leaves vcore context,
it must never return by any mechanism, though free restarts are acceptable. In these
circumstances, for example, no locks can be held. The vcore’s state, such as TLS
variables, must be left ready for the next fresh start. Code in vcore context cannot call
a helper to reenter vcore context and expect to return, since the original code’s stack
will be clobbered.

• Calls to handle events() might not return. Certain preemption scenarios are simpli-
fied by allowing a vcore to restart, as discussed further in Section 6.3.

• No blocking. When a uthread blocks, it is managed by vcore context. There is no
context that can manage when vcore context blocks. Any blocking syscall will result
in a busy wait on the kernel to complete the syscall. User-level blocking, such as when
a uthread blocks on a mutex, is implemented by dropping into vcore context. If vcore
context code tried calling a uthread helper to block, it would clobber its own stack and
never return properly.

• No faulting. When uthreads fault or trap and the kernel is unable to satisfy the fault
in a non-blocking manner, vcore context is responsible for resolving the fault. If vcore
context faults, then the kernel kills the process. Other systems, such as Scheduler
Activations, rely on the kernel to suspend the faulting scheduler context. Since MCPs
are responsible for memory management, it is not unreasonable to have the MCP pin

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 61

the code and data pages of binaries it accesses. This pinning happens in the early
phases of process initialization.

• Limit recursive calls and stack consumption. Vcore context runs on a small stack,
much like kernel threads and IRQ handlers. Ideally, code will spend a very limited
amount of time in vcore context.

• Entry and exit only through authorized helpers. Entering and exiting vcore context is
very tricky. Users are highly discouraged from “rolling their own”. Acceptable ways to
leave vcore context include yielding to the kernel or running a uthread: both of which
are careful to not miss notifications. Entering vcore context from user code typically
happens by only one function: uthread yield() described below.

Embedding the uthread struct in a scheduler-specific thread struct was one aspect of
the interface between a 2LS and the uthread library The second aspect was the table of
upcalls from uthread to the 2LS. The final aspect is a collection of helpers an application
can call into the uthread library. Two of the more common helpers are run uthread() and
uthread yield(). Helpers to run a uthread typically manage the uthread’s state, load the
floating point context if appropriate, load the TLS, and pop into the uthread’s context.
Yielding is more complicated.

There are many reasons for a uthread to enter into vcore context. Originally, there were
two that all 2LSs supported: cooperatively yielding and exiting.

Additionally, the pthread scheduler wanted to enter vcore context for joining and block-
ing on barriers and condition variables. To simplify 2LSs, all of these methods were con-
densed into a single yield call, which takes a callback that is later run in vcore context.
uthread yield() has many moving parts and is worth seeing in its entirety:

1 void uth r ead y i e l d (bool s ave s t a t e , void (∗ y i e l d f n) (struct uthread ∗ , void ∗) ,
2 void ∗ y i e l d a r g)
3 {
4 struct uthread ∗uthread = current uthread ;
5 volat i le bool y i e l d i n g = TRUE;
6 uthread−>y i e l d f n = y i e l d f n ;
7 uthread−>y i e l d a r g = y i e l d a r g ;
8 uthread−>f l a g s |= UTHREADPINNED;
9 u in t 32 t vco re id = vco r e i d () ;

10 struct preempt data ∗vcpd = vcpd of (vco r e id) ;
11 d i s a b l e n o t i f s (vco r e id) ;
12 i f (s a v e s t a t e) {
13 uthread−>f l a g s |= UTHREADSAVED;
14 s a v e u s e r c t x (&uthread−>u ctx) ;
15 }
16 i f (! y i e l d i n g)
17 goto y i e l d r e t u rn pa th ;
18 /∗ From here on down i s on ly executed on the save path (not the wake up) ∗/
19 y i e l d i n g = FALSE;
20 i f (s a v e s t a t e && (uthread−>u ctx . type != ROS SW CTX)) {

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 62

21 s a v e f p s t a t e (&uthread−>as) ;
22 uthread−>f l a g s |= UTHREADFPSAVED;
23 }
24 i f (u t h r e a d h a s t l s (uthread))
25 s e t t l s d e s c (g e t v c pd t l s d e s c (vco r e id) , vco r e id) ;
26 else
27 v co r e c on t e x t = TRUE;
28 s e t s t a c k p o i n t e r ((void ∗) vcpd−>t r a n s i t i o n s t a c k) ;
29 u th r e ad y i e l d () ;
30 a s s e r t (0) ;
31 y i e l d r e t u rn pa th :
32 }

There are many important details to uthread yield() that touch on aspects of user
threading and the complexity of dropping into vcore context.

• Note the UTHREAD PINNED flag at line 8. Any time a uthread needs to know which
vcore it is on for correctness reasons, such as in this example when it disables and
enables notifications, it must pin itself to the vcore, meaning that the scheduler will
not migrate it to another vcore. Without pinning, if this uthread were to read the
vcore id (from TLS) at line 9, but then get interrupted, preempted, and migrated to
another vcore before line 11, it would operate on the wrong vcore’s notif disabled

flag. For more details on UTHREAD PINNED, refer to Section 6.3.

• save user context() at line 14 will return twice, once right after the call, and again
when the uthread is restarted. The volatile stack variable yielding determines which
path to take when the function returns each time.

• Floating point state is conditionally saved, depending on whether or not the archi-
tecture port has support for software contexts yet. Akaros has two types of contexts:
hardware and software. Hardware contexts are generated by interrupts or traps; these
tend to be unexpected and parts of their format may be determined by hardware.
Software contexts are much smaller, and their format is determined by software. For
x86, I used the AMD SysV ABI calling convention for software contexts. Hardware
contexts do not contain floating point state, but software contexts contain the mini-
mum required by the ABI: the mxcsr register and FPU control word. Relying on the
ABI in this manner means that function calls outside a compilation unit, such as a call
to uthread yield(), have no expectation of the FPU being saved, other than mxcsr

and fpcw, and in these cases we do not need to save or restore the entire FPU’s state.
The kernel knows how to start and stop software contexts too: x86 syscalls made with
sysenter use software contexts when interfacing with the kernel for simplicity and
performance.

• Thread local storage is optional, on a per-uthread basis. Thread 0, which is the one that
runs int main(), will have a TLS. Others do not require it, and for some machines not

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 63

using TLS speeds up performance. If a uthread does not use TLS, it uses its current
vcore’s TLS for variables such as current uthread, vcoreid, and vcore context.

• Lines 24-28 are where the uthread enters vcore context: we change to the vcore’s stack
and TLS. Notifications are disabled so that this transition is atomic. Note that if the
kernel interrupts the vcore during this phase, the vcore, and hence the uthread, will
be restarted as if it was not interrupted.

The last bit of uthread yield() calls out to a helper function, mostly to convince the
compiler to not use any stack local variables after we jumped to the vcore’s stack. The
bottom half is relatively simple:

1 stat ic void a t t r i b u t e ((no in l i n e , noreturn))
2 u th r e ad y i e l d (void)
3 {
4 struct uthread ∗uthread = current uthread ;
5 uthread−>f l a g s &= ˜UTHREADPINNED;
6 uthread−>s t a t e = UT NOT RUNNING;
7 uthread−>y i e l d f n (uthread , uthread−>y i e l d a r g) ;
8 cur r ent uthread = NULL;
9 uthread vco r e ent ry () ;

10 }

The yield function is a 2LS’s opportunity to perform certain tasks. For a simple cooperative
yield, the 2LS can place the uthread on a run queue. When blocking on a mutex, the 2LS
can put the uthread on the queue in the mutex’s struct. It is very important to not touch
the uthread once we call the yield function; the uthread could be concurrently restarted on
another vcore. Once the yield is complete, we simply restart the vcore from its entry point.

Vcore context has a specific meaning: code running on a vcore’s stack in its TLS. Uthread
code and vcore code can tell if it is actually in vcore context by examining the TLS variable
vcore context. But from the perspective of other cores or the kernel, vcore context is

defined by the notif disabled flag. If notifications are disabled, the rest of the system will
treat a context as if it were vcore context. For instance, if that context is preempted, it will
be restarted at some point in the future where it left off. Conversely, if code that is in the
actual vcore context (stack and TLS) enables notifications, then the kernel could notify that
vcore and clobber the vcore’s stack. Clearly that should never be done.

The state of appearing to be in vcore context is very useful for user threads. It is equivalent
to disabling interrupts in an operating system, which is necessary for grabbing spinlocks that
could also be grabbed from IRQ or vcore context. The uthread library provides helpers for
disabling and enabling notifications. These helpers pin the uthread to the vcore and then
disable notifications. After reenabling notification, they check the notif pending flag to
see if it missed a notification. If so, it needs to reenter vcore context fully; the easiest 2LS-
independent way is to ask the kernel for a self notification. When a uthread has disabled
notifications, it must abide by a few rules, even though it is not actually in vcore context. Any
faults will kill the process, since the kernel thinks the vcore is in vcore context. Blocking

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 64

syscalls or yielding can be problematic; when the uthread restarts, notifications will be
reenabled and its vcoreid may have changed, which can confuse the uthread’s code. To avoid
serious bugs, if a uthread is pinned or has disabled notifications and attempts to block on
a syscall, then it will behave the same as vcore context: spin until the kernel completes the
call.

Blocking Syscalls

A critical function for user-level schedulers is to handle blocking system calls. Capriccio[9]
and many other systems adapted to legacy OSs interposed on common library calls, such
as read() and write(), and called asynchronous versions from within their runtime. On
Akaros, the job of a user-level runtime is simpler since all system calls have an asynchronous
interface.

Akaros provides synchronous and asynchronous helpers for issuing system calls; uthreads
and even vcore code predominantly use the former. If a syscall blocks, the kernel may
or may not block a kthread internally. Regardless, control returns to userspace, and the
synchronous helper inspects the syscall struct, sees the syscall is not complete, and calls out
to the uthread library. After a few checks to make sure the uthread is in fact an unpinned
uthread, the blocking helper calls uthread yield() with the 2LS’s thread blockon sysc

as the yield callback.
The 2LS is free to do whatever it likes with the uthread and the syscall it is blocked

on. The pthread scheduler takes the mundane approach of removing the pthread from the
list of active threads and registering for an event when the syscall completes. From the
perspective of the scheduler, either registration succeeds and an event will fire when the
syscall completes, or registration fails because the syscall completed already. When the
“syscall complete” event fires, the pthread scheduler puts the thread back on the run queue.

Other schedulers can pursue different policies — this space is very much up for customiza-
tion for particular schedulers. Certain schedulers will want to prioritize unblocked threads,
perhaps based on a thread’s priority or some deadline. Some schedulers may not even want
an event, choosing instead to poll syscalls for completion. Additionally, the type of event can
be customized for different schedulers. Pthreads has per-vcore event queues and requests a
notification (IPI) for a completed syscall; others may have a global event queue or no IPIs.
I discuss the details of event handling and its various options in Section 5.2.

The act of registering for an event with a syscall requires a special uthread helper that
synchronizes with the kernel’s syscall completion code:

1 bool r e g i s t e r e v q (struct s y s c a l l ∗ sysc , struct event queue ∗ ev q)
2 {
3 int o l d f l a g s ;
4 sysc−>ev q = ev q ;
5 wrmb() ;
6 do {
7 o l d f l a g s = atomic read(&sysc−>f l a g s) ;
8 while (o l d f l a g s & SC K LOCK)

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 65

9 o l d f l a g s = atomic read(&sysc−>f l a g s) ;
10 i f (o l d f l a g s & (SC DONE | SC PROGRESS)) {
11 sysc−>ev q = 0 ;
12 return FALSE;
13 }
14 } while (! a tomic cas (&sysc−>f l a g s , o l d f l a g s , o l d f l a g s | SC UEVENT)) ;
15 return TRUE;
16 }

The bulk of the synchronization between the kernel and user is on the syscall struct’s
flags field. When the SC EVENT flag is set, the kernel sends an event to sysc->ev q.
Userspace performs a compare-and-swap to make sure that it atomically sets the SC EVENT

flag so long as the syscall is not complete. For its part, the kernel sets the SC DONE and
SC K LOCK flags, checks for the event flag, then clears SC K LOCK, using atomic OR instruc-
tions.

The reason for the SC EVENT flag is that the kernel needs to atomically complete the
syscall and check for an event queue. Userspace needs to atomically sign up for an event
while making sure the syscall has not already completed. The atomicity of operations on
the syscall’s flags allows us to satisfy these requirements.

One technique to note is that the kernel does not actually perform a compare-and-swap.
If the kernel has a compare-and-swap loop with the user, a malicious user could attempt
a small denial of service by constantly changing the value of old flags. As a general
principle, I never have the kernel operate in a loop controlled completely by the user. I
call the technique used here in register evq() “CAS-ing with the Kernel”. The kernel
sets the SC K LOCK flag, which userspace interprets as an instruction to busy wait on the
kernel. CAS-ing with the kernel here adds a small amount of overhead for both the user
and the kernel in exchange for a small amount of peace of mind. The tradeoff may or may
not be worth it. I use the K LOCK technique in a few other places, notably in dealing with
preemption, discussed in Section 6.1.

The main points behind uthreads blocking on syscalls is that userspace does not lose
control of its core and that the application’s scheduler is completely in control of what to
do. Certain use cases may desire to use the raw asynchronous interface directly, but for
applications that prefer a basic threading abstraction, uthreads should suffice. It should
also be noted that a uthread’s syscall can easily be aborted, as discussed in Section 3.2, if
a scheduler or application desires this. The important part is that the user is in control of
its core, regardless of what the kernel does internally. The kernel may or may not spawn a
kthread for a blocked system call, but userspace does not care: the contract with the kernel
is the syscall struct, and userspace does not lose its core.

Blocking Faults and Traps

Apart from blocking syscalls, the other classic problem with user-level threading is dealing
with faults, especially page faults. System calls are expected and instigated by the user, and

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 66

thus are capable of being controlled by the user, as in the case of Capriccio interposing on
library calls. In contrast faults are often unexpected and much harder to handle.

One approach would be to allow no faults whatsoever; in the case of memory, pin every
page the application mmaps and then never fault. Unfortunately, this approach also removes
our ability to exploit virtual memory for a variety of benefits. For one, we could no longer
mmap files without populating the entire file at map time. All anonymous memory regions
would be pinned, which is a waste of memory. No faulting rules out alternative types of
mmapped memory regions where the OS can reclaim memory arbitrarily and the application
recreates the lost data on demand. Finally, certain applications plan to fault on certain
memory accesses. For instance, the Go runtime occasionally throws a segmentation fault
in valid circumstances; it catches it and moves on as part of normal operations. Simply
ignoring all faults is not an option.

The approach I took in Akaros is to allow the kernel to attempt to handle a fault before
reflecting unhandled faults back to userspace. If the kernel can handle a fault without
blocking, then the user’s context is simply restarted as if nothing happened. For instance, if
there is a page fault on an anonymous memory region, the kernel usually can allocate a page,
zero it, and map it into the users address space without blocking. For file-backed memory
regions, the backing page may already be in the page cache; if so, the kernel merely needs
to map the page into the page table.

However, if the kernel cannot handle the fault without blocking, it passes it back to
userspace. To do so, the kernel squeezes the fault information into the user context, and
then notifies the vcore: meaning it acts as if the vcore received a notify kernel message,
saving the previous context (with fault information) in procdata and starting a fresh vcore
context at vcore entry(). If the fault was from vcore context, the kernel just kills the
process; vcore context code should not fault. Once in vcore context, the fault information is
coupled to the uthread and its context. Since the vcore could be dealing with a preemption
event concurrently, there is the possibility that its current uthread, which just faulted,
might not get run immediately. For this reason, we delay the handling of the fault until the
next time the uthread is started. Specifically, the run uthread() helpers check the context
for fault information before running the uthread, and if there was a fault, the uthread code
upcalls to the 2LS scheduler operation thread refl fault().

Once the specific second-level scheduler receives the fault, it can do whatever it likes.
The pthread scheduler checks the fault information and reacts accordingly. If the fault was
for a file-backed mmapped region, the scheduler issues a raw asynchronous syscall to load
the page cache and populate the virtual address. In essence, the kernel could not resolve
the fault without blocking, so userspace issues a blocking syscall to resolve the fault. In a
sense, the page fault is an implied syscall in traditional operating systems that block and
service faults. In Akaros, the syscall is explicit. Most schedulers should perform the same
steps for page faults on file-backed regions. Other faults can be handled in a 2LS-specific
manner. For instance, pthreads sends a SIGSEGV signal for other page or general protection
faults and a SIGFPE for divide by zero.

Similar to how Scheduler Activations uses the activation to solve all 2LS problems, Akaros

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 67

uses vcore context to deal with blocking calls, page faults, and thread context switches. Next,
I will show some of the benefits of the user-level threading.

Thread Scheduling Microbenchmarks

One of the major, well-known benefits of user-level threading is fast context switches. Al-
though it is no surprise that user-level threading is fast, it is worth making sure Akaros’s
MCPs have fast threading.

The following tests were run on an Intel Xeon E5-2670, 2.6GHz. This Sandy Bridge ma-
chine has two processors, each with 16 hyper-threaded cores (Symmetric Multi-Threading),
for a total of 32 hyper-threads. Each processor has a 20 MB L3 cache. The machine has
256 GB RAM, and a few NICs. The NIC, used in later experiments, is a 1 Gb Intel I350
(PCI Device Id 0x1521). Speedstep, Turbomode, and related technologies are disabled, as
is Advanced Cacheline Prefetching (which basically increases the size of a cache line to 128
bytes). This machine is referred to as “c89”. All Linux tests were run on a 3.11 kernel
and stock Ubuntu. Unless otherwise specified, Linux test programs are pinned to cores, and
IRQs are routed away from those cores (if possible). The context switch microbenchmarks
were run on Akaros commit 0b940e7e.

The basic thread context-switch latency test is to launch a specified number of pthreads
on a single physical core, each of which yields for a specific number of loops:

1 pthread thread () {
2 for (int i = 0 ; i < num loops ; i++)
3 pth r ead y i e l d () ;
4 }

The various configurations tested include whether or not to use TLS (when available) and
choices between stock pthreads and uthread-backed pthreads on Linux. Kevin Klues ported
parts of Parlib, including uthread and vcore code, to Linux. Basic uthreading works, and
vcores are emulated by Linux tasks. Features critical to the MCP are not supported, such
as exposing the vcoremap to userspace and handling preemption. Regardless, it provides a
basic, comparable platform for user-level threading on Linux for experimentation.

The results for each configuration are shown in Table 4.1. Each test ran for 10,000,000
total loops and I report the average time per context-switch.

There are two major points to make here: TLS has an excessive effect on this machine,
and Akaros’s default pthread scheduler is inefficient. I discuss each point in turn and cover
specific improvements below.

Depending on a machine’s architecture, changing the processors TLS descriptor can be
expensive. On RISC-V, for instance, TLS is simply a register and that has very little overhead
to change. On x86, the cost for changing TLS depends on the machine.

As a reminder, the TLS descriptor is a segmentation register that provides a window into
the address space before the page table translation. For an x86-based example, a virtual
address using TLS will specify a register and an offset, such as fs:0x123. Segmentation

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 68

Table 4.1: Average Thread Context-Switch Latency (nsec)

Linux Pth
with TLS

Linux Uth
with TLS

Linux Uth
w/o TLS

Akaros Uth
with TLS

Akaros Uth
w/o TLS

1 Thread 254 474 251 340 174
2 Thr. 465 477 251 340 172
100 Thr. 660 515 268 366 194
1000 Thr. 812 583 291 408 221

hardware translates this virtual address into a linear address. If the base of the segment
specified by fs is 0x456000, then the linear address is 0x456123. The linear address is
passed to the paging hardware, which translates the address to a physical address. The
usage of “virtual address” for “linear address” is quite common, even when talking about
x86 machines, since most address references have identity-mapped segments (for instance,
all non-TLS addresses).

On older x86 machines, typically the kernel sets the TLS just like any other segmentation
register: by writing the base value into a descriptor table, such as the Local Descriptor Table
(LDT), and writing a segmentation register to point at that descriptor entry. Writes to the
LDT are cheap, and writes to the segmentation register are cheap. But the combination of the
two, if either value is a modification instead of rewriting the old value, triggers a hardware-
based “segmentation walk.” Old versions of Akaros (32 bit) had an insecure mechanism to
change the TLS from userspace using this technique. The insecurity comes from allowing
access to the LDT, since the table can include call gates and other non-addressing-related
fields. Even when performing the change from user-space, the segmentation walk takes
around 70-80 nsec — entirely too slow.

Slightly newer x86 machines provide a model-specific register (MSR) to directly write the
TLS base register. These registers bypass the segmentation walk and are faster than setting
an LDT entry. Unfortunately, access to MSRs such as MSR FS BASE is limited to the kernel
only, and writing to MSRs is relatively slow even for the kernel.

Newer x86 machines, starting with Ivy Bridge, provide new instructions that allow both
the kernel and userspace to set the TLS base registers. These registers bypass the segmenta-
tion walk and do not write to MSRs, resulting in very fast TLS changes. Unfortunately, the
machine I use (c89) is Sandy Bridge, and does not have this capability. To deal with this, I
built a fast-call mechanism into Akaros’s syscall handling. The normal syscall path involves
saving registers, jumping to a kernel stack, and calling into dispatch code, but the fast-call
path simply changes the TLS base and returns. For those curious, I use a non-canonical
value for the syscall struct pointer to signal the fast-call; no legitimate syscall could ever
accidentally submit that address. The end result is that Akaros’s TLS changes, like any OS
on an x86, non-Ivy Bridge machine, requires a syscall to change the TLS.

To see the effects of TLS on context-switches, let’s look at Table 4.1. Note the difference
between one thread and two threads on Linux pthreads. The Linux kernel avoids changing

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 69

TLS unless it is necessary. There is no such benefit with the uthread library. On both the
Linux and Akaros versions of Parlib, if a uthread has TLS, then there are TLS descriptor
changes for every context-switch, even if there is only one thread. The reason is that vcore
context has its own TLS that shares the same TLS register as a uthread. When compiling
with GCC, all user code uses the same register for TLS (e.g. fs on 64 bit x86), while the
kernel uses another register for its TLS. Dropping into vcore context as part of the yielding
operation from a uthread with TLS will require a TLS change to the vcore’s TLS.

Akaros’s uthread library lets the application or 2LS pick whether or not a particular
uthread has TLS. For Linux uthreads, TLS support is a compile-time option. In either
case, if the uthread does not have a TLS, the vcore’s TLS will remain loaded during the
uthread’s execution. Ideally all hardware would support fast TLS changes, but since not all
applications need TLS, Akaros will have the option to turn it on or off. Of note, the Go
runtime uses TLS internally, but its user-threads (called go routines) do not need TLS.

The other significant feature from Table 4.1 is that even without TLS, 194 nsec for a
context-switch is very high. The reason is that this version of Akaros’s pthread scheduler
was inefficient, somewhat by design. One of the major purposes of the pthread scheduler is
to find bugs by doing things that schedulers might want to do, even if they are not ideal.
Correctness first, then performance. For example, the 2LS not only has a global runqueue,
but also maintains an “active threads” list. Although the global runqueue does not matter
when running on a single vcore, every time a pthread yields, the lock protecting the lists is
grabbed multiple times.

Table 4.2: Akaros Context-Switch Latency (nsec)

With TLS w/o TLS
No Sched
Locking

No Locking,
No Asserts

Switch-To

2 Thr. 340 172 95 88 55
100 Thr. 366 194 113 105 N/A

Table 4.2 shows the effect of various enhancements to the Akaros pthread scheduler.
Removing locking and asserts (of which there are many) cuts down on half of the overhead
of a context-switch. The Switch-To column tests a direct context switch, which bypasses
the 2LS decision-making process. In this case, the pthread still calls uthread yield() to
changing into vcore context, but in-lieu of calling vcore entry(), it simply pops another
thread. As a note for people implementing switch-to in their 2LS, skipping vcore entry()

could miss an event. In that case, notif pending is still set and we will notice and recover
when we attempt to leave vcore context when popping the user’s context. There may be
more opportunities for tuning Akaros’s user-level context switching; at the extreme-end,
setjmp() and longjmp() are very fast and have no bookkeeping, scheduling decisions, or
even entry into vcore context. It is up to an application or other custom 2LS if they want
to pursue more aggressive approaches.

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 70

4.5 Impact of Dedicated Cores

One of the major benefits to the MCP is that the kernel dedicates physical cores to an
application, providing an interference-free platform. The process interacts with these cores
through the vcore abstraction, but ultimately there is a pinned, unvirtualized, physical re-
source under the application’s control. Applications want the performance of a dedicated
machine; the MCP is the abstraction that provides it. The guarantee to userspace is that
when cores are granted to a process, the kernel will not interrupt, timeslice, or otherwise
interfere with a core, without the process’s permission. Of course, cores can be preempted,
but the process is alerted to this fact, and the kernel will not revoke cores that were provi-
sioned, as discussed in Section 3.2. Even non-provisioned cores are unlikely to be preempted.
The current Akaros kernel scheduler is provisioning, first-come-first-served (FCFS) scheduler,
meaning that it will preempt to satisfy provisioning requirements, but otherwise will only al-
locate idle cores. The stated policy for future MCP kernel schedulers is that any time-slicing
of MCPs will be done at a coarse granularity.

As I discussed in Section 2.5, prior work in the HPC community showed how important
performance isolation is to parallel processes. OS noise, in particular, can have detrimen-
tal effects, especially on synchronizing programs at large-scale. In one anecdote from Ron
Minnich, a printer daemon that woke up every 30 seconds lowered the performance of an
application on a large cluster by 25%.

The classic approach for measuring interference is to read the time, do a fixed amount of
work, then check the time again. Any variations in the elapsed time is a sign of interference.
Although this approach is correct, it misses out on a critical aspect of interference: it is often
periodic.

To not only detect noise, but to analyze its root causes, Sottile and Minnich developed
the Fixed Time Quantum (FTQ) benchmark[101]. FTQ measures how much work is done
in a small, fixed, time quantum, over a larger time interval. The main parameters to FTQ
are the frequency of the sampling and the number of samples, and the output is a collection
of data points of the form {timestamp, work amount}. The most important step is to run
a Fast Fourier Transform on the results to help determine the causes of interference. Note
that the output’s work amount value is not as important as its predictability; {25, 25, 25}
is less noisy than {2, 100, 2}.

FTQ Results and Analysis

In this section, I present the results of FTQ on Akaros and Linux 3.11 on the machine “c89”,
described above, and on a machine called “hossin”, described farther below. All runs are on
a single core, usually core 7 or core 31. Core 7 is on the same socket as core 0, which tends
to have higher interference on both Linux and Akaros. Core 31 is on another socket. Unless
otherwise stated, the cores are MCP/CG cores for Akaros, and for Linux FTQ is pinned to
an otherwise idle core for which interrupts are routed away (from it and its hyper-threaded
sibling). On Akaros, the 2LS is instructed to never yield its vcore, nor ask for any future

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 71

vcores; this does not matter much for a single-core run of FTQ, but it can have effects on
runs across the entire machine. FTQ is set to run at a frequency of 10,000 Hz, which is a
quantum of 100 usec. Note that quanta are rarely exactly 100 usec. The benchmark reads
the timestamp counter (TSC) for the start time and performs work in a loop, polling the
TSC again until the quantum has elapsed. Invariably the amount of elapsed time will exceed
the quantum; note that reading the TSC takes about 30 TSC ticks on c89. FTQ adjusts for
overrunning a quantum by shortening the following quantum by the excess amount, so that
the overall frequency remains accurate.

Figure 4.1: FTQ Raw Output, c89, Linux, Core 7

Let’s begin with a picture of the raw data from a run on Linux, core 7, in Figure 4.1.
The X-axis is the timestamp, starting from 0, and the Y-axis is the work amount for that
quantum. Looking at the raw data can be useful, but often it is not particularly easy to spot
trends. After applying the FFT, we have a choice of what range of frequencies to look at;
this is purely a visualization issue, where certain signals are easier to see if you zoom in.

For example, Figure 4.2 shows up to 3000 Hz, but there is so much noise it is hard to see
what is going on.

Figures 4.3 and 4.4 show the same FFT, zoomed in at 500 and 100 Hz, respectively.
Looking at the 100 Hz Figure 4.4, we can clearly see spikes at 40 Hz and 80 Hz. Often a
signal will repeat at multiples of its frequency; if there is a square-ish signal in the raw data
at say X Hz, there will be signals at X * 1, X * 2,

There is somewhat of an art to interpreting these FTQ results, perhaps due to my lack
of signal processing expertise. From the 100 Hz figure, we can detect a 40 Hz signal, and

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 72

0 500 1000 1500 2000 2500 3000

1e
−

04
1e

−
02

1e
+

00

frequency

sp
ec

tr
um

Figure 4.2: FFT @ 3000 Hz, c89, Linux, Core 7

0 100 200 300 400 500

1e
−

04
1e

−
02

1e
+

00

frequency

sp
ec

tr
um

Figure 4.3: FFT @ 500 Hz, c89, Linux, Core 7

when we look at the 500 Hz figure, we see the multiples of 40 Hz up to 200 Hz. Those all
appear to be from the same underlying source of interference. By contrast, the spike at 250

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 73

0 20 40 60 80 100

1e
−

04
1e

−
02

1e
+

00

frequency

sp
ec

tr
um

Figure 4.4: FFT @ 100 Hz, c89, Linux, Core 7

Hz seems like a new source of interference, one that has its multiple at 500 Hz. Armed with
that knowledge, we can see signals in the original 3000 Hz figure at multiples of 250 Hz.

The next step is to determine what those sources of noise may be. For instance, 250 Hz is
the kernel scheduler tick. I do not the source of the 40 Hz signal, though I suspect something
with the particular Intel platform, as I discuss below.

Additionally, the overall noise floor can be of interest. From discussions with Ron Min-
nich, FFTs from the same type of machine will have similar baseline amounts of noise.

Given that Akaros has absolutely nothing running on a core other than a process, FTQ
results should show that lack of interference. Figure 4.5 is a representative example of early
FTQ results on Akaros, zoomed to 100 Hz. There are huge spikes at multiples of 18 Hz;
there are so many that the 3000 Hz figure (not shown) is mostly a black square. Also, note
the very small signals at 40 Hz and 80 Hz, similar to the signals on Linux.

The source of the 18 Hz signals is not something Akaros is doing; rather they are from
what Akaros does not do well: initialize all devices. Intel machines have a layer of control
known as System Management Mode (SMM), often used by the BIOS or other very low-level
software for platform management. SMM is triggered by a special interrupt, the SMI, and
there are many sources of SMIs in the platform. One of the features of SMM is that the
entire processor, meaning all cores, are placed in SMM during an SMI. I originally ran into
SMM issues when I noticed that certain benchmarks took longer to run when started from
the keyboard, instead of via the serial port. The reason was USB legacy keyboard support;
anything related to legacy hardware is usually implemented with SMM.

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 74

0 20 40 60 80 100

1e
−

04
1e

−
02

1e
+

00

frequency

sp
ec

tr
um

Figure 4.5: FFT @ 100 Hz, c89, Old Akaros, Core 7

Although initializing hardware properly is not really part of the research into whether
or not the MCP abstraction provides isolation, it is necessary to get a decent measurement.
Diagnosing the interference due to SMM with no other evidence is tricky; I was lucky to
figure out the keyboard interference. FTQ’s FFTs provide some much needed assistance by
providing the frequency of interference, in this case around 18Hz. 18.2 Hz is the frequency
at which the 8254 Programmable Interval Timer (PIT) rolls over (1.19 MHz / 65536). I
looked into the initialization of various timer hardware, such as the HPET and RTC, but it
turns out the issue was a platform timer in the Platform Controller Hub (PCH), which is a
chip including the old southbridge functionality. Once I disabled that timer, Akaros’s FFTs
for core 7 on c89 are in Figures 4.6 (100 Hz), 4.7 (500 Hz), and 4.8 (3000 Hz).

Note in Figure 4.6 (100 Hz) that the 40 Hz and 80 Hz signals are still there, though
the signals are weaker. It may be those are SMM related, since the operating system is
not causing them, and since Linux has them, then they may be an artifact of the platform.
Another alternative is that the benchmark itself causes the signal. The act of writing the
results into the pinned data buffer can trigger various machine-dependent signals. For in-
stance, cache and TLB misses may happen periodically, and at values dependent on the size
of the particular caches. Similarly, both Akaros and Linux have a signal around 1250 Hz;
Akaros’s is more apparent, and Linux’s is an increase in the overall noise.

Despite the various platform idiosyncrasies, Akaros’s MCPs have less interference overall
than Linux on core 7, when viewed at 100 Hz, 500 Hz, and 3000 Hz. The difference is
subjectively easier to see as one zooms out. All of these tests were on Core 7, which shares a

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 75

0 20 40 60 80 100

1e
−

04
1e

−
02

1e
+

00

frequency

sp
ec

tr
um

Figure 4.6: FFT @ 100 Hz, c89, Akaros, Core 7

0 100 200 300 400 500

1e
−

04
1e

−
02

1e
+

00

frequency

sp
ec

tr
um

Figure 4.7: FFT @ 500 Hz, c89, Akaros, Core 7

socket and LLC with Core 0. For both Linux and Akaros, Core 0 is busy with various tasks;
on Akaros, Core 0 runs a kernel timer tick, receives various interrupts, and runs SCPs. To

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 76

0 500 1000 1500 2000 2500 3000

1e
−

04
1e

−
02

1e
+

00

frequency

sp
ec

tr
um

Figure 4.8: FFT @ 3000 Hz, c89, Akaros, Core 7

gain more insights into the nature of noise and how FTQ works, I ran the same tests on Core
31, which is on another socket. For ease of comparison, I show both OSs at a given level of
zooming.

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 77

0 500 1000 1500 2000 2500 3000

1e
−

04
1e

−
02

1e
+

00

frequency

sp
ec

tr
um

Figure 4.9: FFT @ 3000 Hz, c89, Linux, Core 31

0 500 1000 1500 2000 2500 3000

1e
−

04
1e

−
02

1e
+

00

frequency

sp
ec

tr
um

Figure 4.10: FFT @ 3000 Hz, c89, Akaros, Core 31

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 78

0 100 200 300 400 500

1e
−

04
1e

−
02

1e
+

00

frequency

sp
ec

tr
um

Figure 4.11: FFT @ 500 Hz, c89, Linux, Core 31

0 100 200 300 400 500

1e
−

04
1e

−
02

1e
+

00

frequency

sp
ec

tr
um

Figure 4.12: FFT @ 500 Hz, c89, Akaros, Core 31

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 79

0 20 40 60 80 100

1e
−

04
1e

−
02

1e
+

00

frequency

sp
ec

tr
um

Figure 4.13: FFT @ 100 Hz, c89, Linux, Core 31

0 20 40 60 80 100

1e
−

04
1e

−
02

1e
+

00

frequency

sp
ec

tr
um

Figure 4.14: FFT @ 100 Hz, c89, Akaros, Core 31

Two traits stand out: Akaros has less signals overall, as with the previous results on Core
7, and Akaros’s noise floor is significantly lower. Linux’s graphs are very similar between

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 80

Core 7 and 31; moving to another socket did not achieve much. Arguably, the Core 31 at
3000 Hz is a little better. Akaros’s Core 31 graphs are mostly just shifted down, compared
to Core 7. I do not know the reasons behind this behavior. One possibility is some form of
cross-chip interference, such as sharing the L3 cache. On Akaros, the other cores sharing the
socket with Core 31 are all halted. On Linux, those cores respond to the same sorts of timer
ticks and background daemons that run on all Linux cores. Perhaps that added interference
is enough to increase the overall amount of noise.

It is worth looking at the raw data for Akaros, comparing Core 7 to Core 31 in Figures 4.15
and 4.16, respectively. Both have a “thick band” of results, but Core 7 has a little hitch
around sample 7.5 ∗ 1010. Step-ups like this can be indicative of some form of warm-up;
based on how long it takes to kick in, it may be a hardware feature like Turbomode, though
that particular setting is disabled in the BIOS.

Although we are looking at the raw data, compare Akaros’s Core 7 (Figure 4.15 to Linux’s
Core 7 (Figure 4.1). We cannot see any signals or patterns of interference for either OS,
but we can see that Akaros’s results are much tighter and more predictable. This matches
the intuition from looking at the various FFTs, where Akaros has a lower noise floor, fewer
spikes, and a less “bristly” FFT. The FFT is powerful, but sometimes the raw data is still
useful too.

Figure 4.15: FTQ Raw Data, c89, Akaros, Core 7

Given all the platform-specific behavior exposed by FTQ, whether it is SMM or possible
microarchitectural traits, I compared Akaros and Linux on another machine. The next
machine, referred to as “hossin”, is an Intel Nehalem Core i7-920, 2.67 GHz. It has a single

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 81

Figure 4.16: FTQ Raw Data, c89, Akaros, Core 31

socket with 4 cores, 8 hyperthreads, 8 MB L3 cache, and 3 GB RAM. The Linux kernel was
3.11.1-gentoo.

Running FTQ on Akaros on this machine required disabling all USB legacy support in
the kernel, which is a normal part of initializing the USB subsystem. Akaros uses the USB
legacy mass storage to boot, since we tend to boot desktops with a USB hard drive. Since
the BIOS needs legacy USB support to boot us, we need to wait until the kernel runs to
disable the legacy USB stack. Failing to do this results in a very strong 1 Hz signal (not
shown); the constant SMIs are probably polling the USB device.

As before, I show the results for both Linux and Akaros, zooming from 3000 Hz down to
100 Hz.

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 82

0 500 1000 1500 2000 2500 3000

1e
−

07
1e

−
05

1e
−

03
1e

−
01

1e
+

01

frequency

sp
ec

tr
um

Figure 4.17: FFT @ 3000 Hz, hossin, Linux, Core 7

0 500 1000 1500 2000 2500 3000

1e
−

07
1e

−
05

1e
−

03
1e

−
01

1e
+

01

frequency

sp
ec

tr
um

Figure 4.18: FFT @ 3000 Hz, hossin, Akaros, Core 7

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 83

0 100 200 300 400 500

1e
−

07
1e

−
05

1e
−

03
1e

−
01

1e
+

01

frequency

sp
ec

tr
um

Figure 4.19: FFT @ 500 Hz, hossin, Linux, Core 7

0 100 200 300 400 500

1e
−

07
1e

−
05

1e
−

03
1e

−
01

1e
+

01

frequency

sp
ec

tr
um

Figure 4.20: FFT @ 500 Hz, hossin, Akaros, Core 7

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 84

0 20 40 60 80 100

1e
−

07
1e

−
05

1e
−

03
1e

−
01

1e
+

01

frequency

sp
ec

tr
um

Figure 4.21: FFT @ 100 Hz, hossin, Linux, Core 7

0 20 40 60 80 100

1e
−

07
1e

−
05

1e
−

03
1e

−
01

1e
+

01

frequency

sp
ec

tr
um

Figure 4.22: FFT @ 100 Hz, hossin, Akaros, Core 7

The first trait to note is that the noise floor on hossin is different than on c89 for both
Linux and Akaros. For instance, Linux’s noise on hossin was around 10−3, compared to 10−2

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 85

on c89. Linux has two sources of periodic interference: 100 Hz tick and 300 Hz tick. Both
sources repeat at multiples of the base frequency; the clue that the sources are different is
the magnitude of the 300 Hz signal. This version of the Linux kernel was configured with a
300 Hz scheduler tick. I do not know what the 100 Hz signal is for, probably another timer.

Akaros has a large signal at 1000 Hz, but otherwise both its noise floor and the amount of
signal at that level (the spectrum’s thickness) are very low. Akaros is below 10−5, compared
to Linux’s below 10−3. However, Akaros does have a very large 1000 Hz signal, possibly
due to some hardware I did not initialize properly. The raw data in Figures 4.23 and 4.24 is
interesting in this regard. For both Akaros and Linux, the usual work amount for a quantum
is about 703. The deviations are around 680-690 for Akaros and worse than that for Linux.
Akaros only has 12 deviations, which are quanta with any interference, compared to over
16,000 for Linux out of over 50 billion quanta. There is so little interference in Akaros that
you can see it in the raw data. The 1000 Hz signal on Akaros may be very large, but that
does not mean the interference is large — only that the signal itself is very clear. The
lesson is that the magnitude of the signals in the FFT are not indicative of the amount of
interference, only the periodic nature of the interference. More signals and a higher noise
floor are both indicative of higher interference.

Figure 4.23: FTQ Raw Data, hossin, Akaros, Core 7

FTQ and Performance Isolation Summary

There are many sources of interference in a computer, and the operating system can only
control some of them. An OS that allocates unvirtualized, physical cores to an application is

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 86

Figure 4.24: FTQ Raw Data, hossin, Linux, Core 7

necessary, but not sufficient, for performance isolation. Users need to analyze their particular
platforms and deal with issues like System Management Mode, Turbo-mode, and other
hardware characteristics. Although many SMM issues on Akaros are a result of uninitialized
hardware, some SMM events are unavoidable — SMIs can be critical for the platform’s
health, such as alarms to prevent overheating. Additionally, a particular chip might have
other sources of variation per quantum. For instance, the steady 703 count per quantum on
hossin was very different than c89. Even with Akaros on Core 31 on c89, the counts varied
in a thick band (Figure 4.16), which is a trait that OSs are unlikely to affect.

FTQ is a useful benchmark to compare the performance isolation of different OSs and
various settings on a given machine. Both the raw data and the FFT are useful in different
ways. The raw data exposes certain temporal behavior, such as a sudden step-up in perfor-
mance, and the raw view provides insights into the bounds and patterns of the interference.
The FFT extracts patterns in the raw data that humans likely cannot see, which is useful
for both debugging sources of interference and comparing results from separate experiments.

In this section, I have shown that Akaros’s MCP cores have an order of magnitude less
noise than Linux. This improvement can be seen by comparing the noise floors from the
FFTs of the FTQ output. Additionally, Akaros has fewer periodic signals — these are the
spikes throughout the FFT output. Together, these two results show that MCP cores have
less interference and better CPU isolation than a traditional OS’s cores.

In the long term, Akaros plans to provide the same provisioning/allocation scheme for
other resources as it provides to CPUs, for (future) hardware that supports isolating those

CHAPTER 4. LIFE FOR A MANY-CORE PROCESS 87

resources.
Current x86 hardware allows the OS to control the CPU and RAM directly and other

resources indirectly. As a proxy for controlling caches, the OS can provision and allocate all
the cores that share a particular cache to the same application. Although the OS cannot
cleanly prevent the cores from interfering with each other’s cache accesses, at least the
application only deals with interference from itself and not from other programs or the OS
itself. There are various other techniques to indirectly affect the use of certain resources,
such as page coloring[49]. Page coloring is based on the observation that certain physical
pages of memory will be mapped to certain parts of a cache. The details depend on the
associativity and size of the caches. Page coloring can be used to restrict which parts of a
cache a process can access by only granting certain physical pages to the process, such that
the physical pages map to only the “allocated” banks of the cache.

Akaros has had rudimentary support for page coloring for a few years, though no one uses
it. There are many issues with page coloring, one of which is that the partitioning applies to
all levels of caching. Though the number of “colors” differs at each level of caching, based
on the cache’s traits, isolating a process to use one color in the L3 can restrict the process
to using that same color in the L1 and L2, even if those caches are not shared with other
cores. It is also much more difficult to color the kernel’s pages, compared to the user’s.

Regardless of cache and other resource isolation, CPU isolation is a critical component
of predictable performance, which is especially important for parallel processes. Akaros’s
MCPs have an order of magnitude less noise than on Linux, as well as fewer periodic signals,
resulting in better CPU isolation. Ultimately, the MCP provides a collection of isolated
physical cores to a process, even though the abstraction involves “virtual” cores. It is up to
the application to schedule its threads and utilize its resources to the best of its ability, free
from OS noise and CPU interference from other processes.

88

Chapter 5

Event Delivery

Processes need to communicate, both with the kernel and other processes. IPC and signal
delivery are common to all operating systems, and Akaros has a variety of these mechanisms.
In this chapter, I will discuss how Akaros supports event delivery for MCPs. I start with the
basic overview of events, followed by particular event delivery mechanisms such as the UCQ,
and conclude with a description of the overall event subsystem and the various techniques
for ensuring message delivery.

The MCP has various requirements for event delivery:

• The user controls delivery parameters. MCPs need to control all aspects of their
environment. For a certain event, the process wants to control whether or not it
receives an interrupt and which vcore receives the interrupt (notification). Likewise, a
process may require an event with a payload, or perhaps merely setting a bit would
suffice. The simplest approach is to ask for an IPI and only set a bit for the message:
equivalent to how hardware interrupts work. More complicated approaches require
more programming effort from the process.

• MCPs need options for reliable delivery. The primary example of an event is the
“syscall complete” message. Many second-level schedulers (2LSs) cannot afford to miss
this message; otherwise the process may go to sleep, not knowing a thread can unblock.
Missing messages when leaving vcore context is equivalent to Saltzer’s “wakeup waiter”
problem[94]. One distinction with MCP event delivery is that the “waiter” is user code,
and the kernel and user must work together to solve the “wakeup waiter” problem. Not
all events require reliable delivery — this depends on the specific event. Furthermore,
some events should only be delivered once. For example, if the “syscall complete”
message can be delivered more than once, the 2LS needs added complexity to prevent
restarting the same uthread twice or dealing with messages for old syscall structs.

• Delivery should strive to be fast and scalable, yet safe for the kernel. Many fast IPC
systems, such as the Xen ring buffers[7], use shared memory. In these systems, the
kernel is synchronizing with a potentially malicious user and must be careful to protect

CHAPTER 5. EVENT DELIVERY 89

itself. All serious systems, including Xen, protect the kernel in this manner; Akaros
must be no different.

Akaros’s event delivery provides the option for either a bit or a payload element, consisting
of a small number of bytes. I will start from the bottom-up, describing how we can deliver
payloads from the kernel to the user.

5.1 Concurrent Queues for Payloads

Bounded Concurrent Queues

Originally, I built a data structure for event delivery called Bounded Concurrent Queues.
They were multi-producer/multi-consumer, fixed sized, ring buffers of elements, where the
producer never trusts the consumer. They were inspired and based on techniques used by
Xen’s ring buffers[7], which were mapped into shared memory. They turned out to be a little
lacking, so Akaros does not use them currently, though I may use them in the future.

Xen’s buffers were bidirectional, power-of-two sized buffers, with two index variables
tracking each end of the ring. A sender (for a given direction) increments a “private index”,
reserving a slot in the buffer, then copies the payload into the slot, and finally updates a
shared variable that signals the receiver that the payload can be extracted. The power-of-
two size buffer means that the index variables can simply be incremented, using masking as
a very fast modulus operator. BCQs differed in three ways:

• Multi-producer/multi-consumer: the BCQ code had enqueue() macros, supporting
multiple producers. Senders would compete on the private index variable with compare-
and-swap. Atomic increment might not be sufficient, since it needs to handle cases
where the queue fills concurrently.

• All data structure state was stored in the shared memory region. Xen had a shared
region and two private bookkeeping regions, one for each end of the communication
that were inaccessible to the other. BCQs put all the state in the shared ring, and the
kernel simply did not trust the values. There were no pointers, and array indexes were
limited to the buffer size by masking against the size - 1. The purpose of keeping the
metadata in the structure is so that userspace can allocate and initialize the structures
without the kernel’s involvement.

• BCQs were unidirectional, which is a relatively minor point.

BCQs are relatively simple, where most of the complexity is dealing with failures by the
producer:

struct bcq_header {

uint32_t prod_idx; /* next to be produced in */

CHAPTER 5. EVENT DELIVERY 90

uint32_t cons_pub_idx; /* last completely consumed */

uint32_t cons_pvt_idx; /* last a consumer has dibs on */

};

1

2 #define b c q i n i t (bcq , e l e t yp e , num elems)
3 memset ((bcq) , 0 , s izeof (e l e t y p e) ∗ (num elems))
4

5 #define BCQ FREE SLOTS(p , cp , ne) ((ne) − ((p) − (cp)))
6 #define BCQEMPTY(p , cp , ne) ((ne) == BCQ FREE SLOTS(p , cp , ne))
7 #define BCQNOWORK(p , cpv) ((p) == (cpv))
8 #define BCQ FULL(p , cp , ne) (0 == BCQ FREE SLOTS(p , cp , ne))
9

10 #define bcq enqueue (bcq , elem , num elems , num fa i l)
11 ({
12 u in t 32 t prod , new prod , cons pub , f a i l c t r = 0 ;
13 int r e t v a l = 0 ;
14 do {
15 cmb() ;
16 i f (((num fa i l)) && (f a i l c t r++ >= (num fa i l))) {
17 r e t v a l = −EFAIL ;
18 break ;
19 }
20 prod = (bcq)−>hdr . prod idx ;
21 cons pub = (bcq)−>hdr . cons pub idx ;
22 i f (BCQ FULL(prod , cons pub , (num elems))) {
23 r e t v a l = −EBUSY;
24 break ;
25 }
26 new prod = prod + 1 ;
27 } while (! a tomic cas u32 (&(bcq)−>hdr . prod idx , prod , new prod)) ;
28 i f (! r e t v a l) {
29 (bcq)−>wraps [prod & ((num elems)−1)] . elem = ∗(e lem) ;
30 (bcq)−>wraps [prod & ((num elems)−1)] . r dy f o r c on s = TRUE;
31 }
32 r e t v a l ;
33 })
34

35 #define bcq dequeue (bcq , elem , num elems)
36 ({
37 u in t 32 t prod , cons pvt , new cons pvt , cons pub ;
38 int r e t v a l = 0 ;
39 do {
40 cmb() ;
41 prod = (bcq)−>hdr . prod idx ;
42 con s pv t = (bcq)−>hdr . con s pvt idx ;
43 i f (BCQNOWORK(prod , c on s pv t)) {
44 r e t v a l = −EBUSY;
45 break ;
46 }

CHAPTER 5. EVENT DELIVERY 91

47 new cons pvt = (con s pv t + 1) ;
48 } while (! a tomic cas u32 (&(bcq)−>hdr . cons pvt idx , cons pvt ,
49 new cons pvt)) ;
50 i f (! r e t v a l) {
51 while (! (bcq)−>wraps [c on s pv t & ((num elems)−1)] . r dy f o r c on s)
52 cpu re l ax () ;
53 ∗(e lem) = (bcq)−>wraps [c on s pv t & ((num elems)−1)] . elem ;
54 (bcq)−>wraps [c on s pv t & ((num elems)−1)] . r dy f o r c on s = FALSE;
55 while ((bcq)−>hdr . cons pub idx != con s pv t)
56 cpu re l ax () ;
57 (bcq)−>hdr . cons pub idx = con s pv t + 1 ;
58 }
59 r e t v a l ;
60 })
61

62 #define bcq empty (bcq)
63 BCQNOWORK((bcq)−>hdr . prod idx , (bcq)−>hdr . con s pvt idx)

BCQs are a useful way to move payloads to userspace, with basic initialization, enqueue,
and dequeue methods. The main problem with BCQs was that some use cases needed more
from them. Enqueuing messages in BCQs can fail, due to either a misbehaving process,
an unlucky circumstance, or most commonly because the queue was full. Event queues,
described later and which used BCQs as a building block, would handle the failure as an
“overflow” of events, and signal the process with a bit.

In the early days of using BCQs to send syscall completion events, deciding how a 2LS
could deal with a missed syscall message was rather tricky. When the kernel completes a
syscall, it sends a message that a particular syscall was done. Userspace needs to know
exactly which one was done, under normal circumstances. With BCQs, the 2LS needs to
know how to handle overflow. Handling overflow requires tracking every outstanding syscall
so that it can poll to see which call completed. A global list or hash table (hashed on
the syscall struct address) would work, though there is a “scalability tax” paid to manage
these for every blocking syscall, since the 2LS must prepare for the possibility of any syscall
completion message being lost. Per-vcore lists are a tempting solution, but when a vcore is
preempted, the list needs to be dealt with.

An additional complication is that the 2LS cannot blindly run the completion handler
on a syscall twice, in essence a “memory-reuse” or “stale-pointer” problem. Say completion
messages were sent for syscalls A and B. A’s message was delivered, and B’s failed and
triggered an overflow. The overflow handler polls all syscalls for completion, and notices A
is complete. However, there is also a message delivered for A’s completion, possibly handled
by another vcore concurrently. Any scheme that attempts to handle syscall overflow messages
must account for this possibility.

On a similar note, dealing with missing messages that inform the process of a vcore
being preempted can be difficult. In that case, the process can perform an O(n) scan of the
vcoremap, but it also needs to know which vcores are supposed to be online. It is possible
and correct for applications to have holes in their vcoremaps, such the list of online vcores

CHAPTER 5. EVENT DELIVERY 92

are not consecutively numbered.
In either case, it is not impossible to deal with overflowing a BCQ and losing a message;

it is just difficult. Ultimately, complicated systems could benefit from not needing to handle
overflow, which led me to develop an unbounded variant of the concurrent queue.

Unbounded Concurrent Queues

Unbounded Concurrent Queues (UCQs) are a tool to send messages, with payloads, from
the kernel to a process through shared, user-writable memory. UCQs support multiple
concurrent producers and consumers, and the producers never trust the consumer. The
depth of the queue is “unlimited”, barring running out of user memory. “Growable” or
“Expandable” would be a better name than “Unbounded”; I may change it one day. UCQs
should be used in closed-loop or low-rate scenarios that require a payload or that where
missing a message is unwieldy. UCQs takes advantage of the fact that the kernel is the
producer, which provides certain opportunities since the consumer trusts the producer. The
problems in evolving the BCQs to UCQs are running out of slots for events, being careful
about the kernel using user-provided pointers, and synchronizing within the kernel (e.g. a
spinlock for a linked list).

The basic idea for UCQs is to use linked, mmapped pages of arrays of event messages.
By comparison, the BCQ is a circular array of event messages. As the kernel over-produces
messages, it mmaps more pages into the user’s address space and links them together, via a
header at the beginning of the page. Userspace munmaps when it consumes all the entries in
a page. To avoid excessive calls to mmap() and munmap(), we double-buffer with two pages:
one current and one spare. We only need to mmap new pages when the kernel gets far ahead
of the user.

The main benefit of UCQs is that they can handle spikes of messages and thus remove
the need to handle overflow. This benefit comes from the kernel’s ability to mmap new pages
for the user on-demand, due to the user’s implicit trust of the kernel. The implicit mmap
solves the problem of running out of room in a fixed-size buffer by adding more buffers. The
worst thing userspace can do is leak its own memory, or cause an out-of-memory condition,
which the OS must deal with anyway. To be clear, any problem caused by a malicious user
by triggering implicit mmaps can also be caused by normal, explicit mmaps.

Of course, the main benefit of the UCQ is also tied to its main drawback: a process can
die if it the kernel runs out of memory while trying to send it messages. If the kernel sends
messages faster than the process can handle them for any reason, including being swapped
out, eventually the process exceeds its allowable memory allocation. UCQs are powerful,
but they need to be used carefully, such that the process is not requesting an unbounded
amount of messages at one time. Syscall completions are not unbounded: they are limited
by the number of syscalls and usually uthreads, any of which take up more memory than
the actual payload.

Using user-pointers is not conceptually a problem, so long as the kernel reads the pointer
in and verifies the address is in userspace, and that it can handle kernel page faults on user

CHAPTER 5. EVENT DELIVERY 93

addresses. Akaros actually cannot handle the later yet, though that is a coding problem,
not a design problem. Regardless of the safety of using pointers or not, it is safer and faster
to use array indices, similar to the BCQ. I only use pointers that could be controlled by
userspace in limited situations, and always copy-in and verify the pointer before using it.

Swapping pages of buffers requires locking or some form of synchronization between kernel
producers, but we cannot put the lock in the UCQ structure, since userspace could corrupt
it. One option would be to use private data structures, as Xen’s ring buffers do, and put the
lock in the kernel-private structure. As with BCQs, I prefer to keep UCQ metadata in the
shared memory structure so that userspace can allocate and initialize the UCQ on its own.
Not only is this more flexible for the user, but it avoids the slight problem of looking up the
private kernel part based on information from userspace.

Of course, any kernel locking strategy needs to use memory that is not user-writable.
Instead of using private, per-UCQ memory, I lock at the process level. For scalability reasons,
instead of grabbing the process lock, I grab a hashlock, which I developed specifically for
UCQs. Hashlocks are a hash table of regular spinlocks; hashed in this case on the pointer
of the UCQ. Typically, when coding in C, lock structures are embedded in larger structures,
such as a file lock being in an inode struct. Hashlocks provide a means of synchronizing
on objects in memory not inside the structures they protect. Additionally, there are not as
many locks as objects, which can be both good and bad, where the tradeoff is between false
sharing and memory usage. For UCQs, the benefit is that the memory is external from the
user-writable ucq structs. In a sense, the hashlocks serve as the private structure for the
UCQ. The differences are that there is not a one-to-one mapping between locks and UCQs
and the kernel does not need to know about the UCQs a priori. The hashlocks are private
for the kernel, but are not per UCQ.

How UCQs Work: Common Code

First, we should look at the structures in shared memory, which are shared between the user
and the kernel. The overall structure is the UCQ, which points to a chain of pages.

struct ucq {

atomic_t prod_idx; /* both pg and slot nr */

atomic_t cons_idx; /* cons pg and slot nr */

atomic_t spare_pg; /* mmaped, unused page */

atomic_t nr_extra_pgs; /* nr pages mmaped */

bool prod_overflow; /* prevents wraparound */

bool ucq_ready;

/* Storage for Userspace lock for modifying the UCQ */

uint64_t u_lock[2 * ARCH_CL_SIZE / 8];

};

struct ucq_page_header {

CHAPTER 5. EVENT DELIVERY 94

uintptr_t cons_next_pg; /* next page to consume */

atomic_t nr_cons; /* consumed so far */

};

struct msg_container {

struct event_msg ev_msg;

bool ready; /* kernel has written */

};

struct ucq_page {

struct ucq_page_header header;

struct msg_container msgs[];

};

The struct event msg is the payload, coupled with a “ready” flag so the consumer
knows when the message is fully copied into the storage. Each page in the linked list of
pages is a struct ucq page, each of which has a header that points to the next page and
contains an array of messages. The UCQ has producer and consumer indexes, pointing to
the next free “slot”; an index encodes both the virtual page address and the container index
within that page. When producers or consumers get a slot, they need to convert it to an
actual message pointer. Both the user and the kernel use the following two helper functions:

1 stat ic bool s l o t i s g o o d (u i n t p t r t s l o t)
2 {
3 u i n t p t r t counter = PGOFF(s l o t) ;
4 u i n t p t r t pg addr = PTEADDR(s l o t) ;
5 return ((counter < NR MSG PER PAGE) && pg addr) ? TRUE : FALSE;
6 }
7

8 stat ic i n l i n e struct msg conta iner ∗ s lot2msg (u i n t p t r t s l o t)
9 {

10 return &((struct ucq page ∗)PTE ADDR(s l o t))−>msgs [PGOFF(s l o t)] ;
11 }

Armed with the basics, next we will see how the kernel sends messages to a UCQ.

How UCQs Work: Producing

To actually send a message, the kernel calls send ucq msg(). I describe the various parts
below.

1 void send ucq msg (struct ucq ∗ucq , struct proc ∗p , struct event msg ∗msg)
2 {
3 u i n t p t r t my s lot = 0 ;
4 struct ucq page ∗new page , ∗ o ld page ;
5 struct msg conta iner ∗my msg ;
6

CHAPTER 5. EVENT DELIVERY 95

7 a s s e r t (i s u s e r rwaddr (ucq , s izeof (struct ucq))) ;
8 i f (ucq−>prod over f l ow)
9 goto g rab lo ck ;

10 my slot = (u i n t p t r t) atomic f e tch and add(&ucq−>prod idx , 1) ;
11 i f (s l o t i s g o o d (my slot))
12 goto have s l o t ;
13 ucq−>prod over f l ow = TRUE;
14 i f (PGOFF(my slot) > 3000)
15 warn (”Abnormally high counter , the re ’ s probably something wrong ! ”) ;
16 g rab lo ck :
17 ha sh l o c k i r q s av e (p−>ucq hashlock , (long) ucq) ;
18 my slot = (u i n t p t r t) atomic f e tch and add(&ucq−>prod idx , 1) ;
19 i f (s l o t i s g o o d (my slot))
20 goto un lo ck l o ck ;
21 o ld page = (struct ucq page ∗)PTE ADDR(my slot) ;
22 i f (! i s u s e r rwaddr (old page , PGSIZE) | | ! o ld page)
23 goto e r r o r add r un l o ck ;
24 new page = (struct ucq page ∗) atomic swap(&ucq−>spare pg , 0) ;
25 i f (! new page) {
26 new page = (struct ucq page ∗)do mmap(p , 0 , PGSIZE ,
27 PROTREAD | PROTWRITE,
28 MAPANON | MAPPOPULATE, 0 , 0) ;
29 a s s e r t (new page) ;
30 } else {
31 i f (! i s u s e r rwaddr (new page , PGSIZE) | | PGOFF(new page))
32 goto e r r o r add r un l o ck ;
33 }
34 new page−>header . cons next pg = 0 ;
35 new page−>header . nr cons = 0 ;
36 old page−>header . cons next pg = (u i n t p t r t) new page ;
37 my slot = (u i n t p t r t) new page ;
38 atomic s e t (&ucq−>prod idx , my s lot + 1) ;
39 un lo ck l o ck :
40 ucq−>prod over f l ow = FALSE;
41 hash un l o ck i r q save (p−>ucq hashlock , (long) ucq) ;
42 have s l o t :
43 my msg = slot2msg (my slot) ;
44 i f (! i s u s e r rwaddr (my msg , s izeof (struct msg conta iner)))
45 goto e r r o r addr ;
46 my msg−>ev msg = ∗msg ;
47 wmb() ; /∗ order ready wr i t e a f t e r ∗msg ∗/
48 my msg−>ready = TRUE;
49 return ;
50 e r r o r add r un l o ck :
51 ucq−>prod over f l ow = FALSE;
52 hash un l o ck i r q save (p−>ucq hashlock , (long) ucq) ;
53 e r r o r addr :
54 warn (” Inva l i d user address , not sending a message”) ;
55 }

CHAPTER 5. EVENT DELIVERY 96

Producers atomically compete with fetch-and-add calls for slots in prod idx (line 10),
which encodes both the page and the message number within the page. The fetch-and-add
ensures that every producer gets a unique slot. In the common case, if the slot is good, we
just jump to have slot (line 42) and write our message in the ev msg. The kernel barriers
and signals the ready flag, is in case the consumer is trying to concurrently read the message
while a write is in progress.

The slot is “good” when it points to a valid page and a slot within the range of the message
array. When the slot is bad, things get interesting. To protect the linked-list invariants and
prevent various madness with concurrent updates, the kernel grabs a hashlock, external to
the UCQ. Whichever kernel thread grabs the lock first will be responsible for getting a new
page and resetting the producer’s index, which tracks which slot is next as well as the new
page. All future lockers can tell if that work has been completed by examining the counter
and trying to get a slot. If they get a good one, everything is okay and it is just like they
got a good slot in the first place.

One minor problem is that with sufficient producers and a delayed fixer, we could overflow
the prod idx. Around 3900 concurrent producers could overflow the prod idx into a new
page on the 0th slot. To avoid overflow, the first producer to detect the slot/index is bad
will set an overflow flag (line 13). All future producers will check this flag before attempting
to get a slot, and if we are overflowing, they will jump to the grab lock phase. In theory,
there could be 3900 producers at exactly the same time all fetch and add, before any of the
others have a chance to set the overflow. Not only does this require 3900 cores, but they all
have to be writing to the exact same UCQ. If this happens, I have a warning that will go
off.

The next part is getting a new page and linking it with the old one (line 24). The kernel
simply does an atomic swap() on the spare pg. If there is a spare already mmaped, the
kernel uses it. Otherwise, we need to mmap a new page. The spare page keeps the amount
of mmap() and munmap() calls to a minimum; they are only needed when we grow the UCQ
beyond two pages. Either way, we link the old page to follow to the new page. We set the
index to a good value, then unlock and clear the overflow flag.

When we set the counter, we set it to 1 (line 38), instead of 0, thereby reserving slot 0
for the kernel thread performing the operations. Aside from being slightly more efficient, we
prevent a denial of service from the user. The user could muck with the prod idx endlessly,
in a way that seems benign. By reserving a slot, we make sure that any time the kernel grabs
the hashlock that it gets a good slot. Whenever we fail to get a slot we lock, and whenever
we lock we get a good slot.

How UCQs Work: Consuming

Consuming is similar to producing, but with slightly different concerns. Although the kernel
could not spin or wait on the user, the user can wait on the kernel. But the user needs to
be careful of spinning on other users, which may be preempted.

CHAPTER 5. EVENT DELIVERY 97

The consumer calls get ucq msg() to copy-out the next message from the UCQ, if one
is available. If none are available, this does not block to wait for one.

1 int get ucq msg (struct ucq ∗ucq , struct event msg ∗msg)
2 {
3 u i n t p t r t my idx ;
4 struct ucq page ∗ old page , ∗ other page ;
5 struct msg conta iner ∗my msg ;
6 struct s p i n pd r l o c k ∗ ucq lock = (struct s p i n pd r l o c k ∗)(&ucq−>u lock) ;
7

8 do {
9 l oop top :

10 cmb() ;
11 my idx = atomic read(&ucq−>cons idx) ;
12 i f (my idx == atomic read(&ucq−>prod idx))
13 return −1;
14 i f (s l o t i s g o o d (my idx))
15 goto c l a im s l o t ;
16 s p i n pd r l o c k (ucq lock) ;
17 my idx = atomic read(&ucq−>cons idx) ;
18 i f (s l o t i s g o o d (my idx)) {
19 sp in pdr un lock (ucq lock) ;
20 i f (my idx == atomic read(&ucq−>prod idx))
21 return −1;
22 goto c l a im s l o t ;
23 }
24 o ld page = (struct ucq page ∗)PTE ADDR(my idx) ;
25 while (! o ld page−>header . cons next pg)
26 cpu re l ax () ;
27 atomic s e t (&ucq−>cons idx , o ld page−>header . cons next pg) ;
28 while (atomic read(&old page−>header . nr cons) < NR MSG PER PAGE) {
29 cpu r e l ax vc (v co r e i d ()) ; /∗ pass in s e l f to check everyone e l s e ∗/
30 }
31 old page−>header . cons next pg = 0 ;
32 atomic s e t (&old page−>header . nr cons , 0) ;
33 other page = (struct ucq page ∗) atomic swap(&ucq−>spare pg ,
34 (long) o ld page) ;
35 i f (other page) {
36 munmap(other page , PGSIZE) ;
37 atomic dec(&ucq−>nr ex t r a pg s) ;
38 }
39 sp in pdr un lock (ucq lock) ;
40 goto l oop top ;
41 c l a im s l o t :
42 cmb() ;
43 } while (! a tomic cas (&ucq−>cons idx , my idx , my idx + 1)) ;
44 a s s e r t (s l o t i s g o o d (my idx)) ;
45 my msg = slot2msg (my idx) ;
46 while (! my msg−>ready)
47 cpu re l ax () ;

CHAPTER 5. EVENT DELIVERY 98

48 rmb() ; /∗ order the ready read be f o r e the con ten t s ∗/
49 ∗msg = my msg−>ev msg ;
50 my msg−>ready = FALSE;
51 wmb() ; /∗ pos t the ready wr i t e b e f o r e increment ing ∗/
52 atomic inc (&((struct ucq page ∗)PTE ADDR(my idx))−>header . nr cons) ;
53 return 0 ;
54 }

The first thing to note is that, unlike with producing, consumers compare-and-swap
(CAS) to claim a slot (line 43), instead of fetch-and-add. I need to use CAS, since we do not
want to advance the index unless the UCQ is not empty. The kernel could blindly advance,
since it was the producer and would advance the index regardless.

Emptiness is defined as the prod idx == cons idx (line 12). Both the producer’s and
the consumer’s “next“ slot is the same, so there are no items to be consumed. In that case,
the UCQ is empty, so we simply return.

In the common case of a non-empty UCQ, the next available slot is good. The consumer
immediately tries to claim the slot with a CAS (line 41), which atomically advances the
consumer’s index. Once the consumer has secured a good slot, and it must spin until the
kernel has loaded the memory with a message. Then we just copy-out the message and
increment the “number consumed” counter. The copy-out is important since as soon as
we incremented the “number consumed” counter (line 52), the page containing the message
could be freed.

As with the producer’s side, things get interesting when the slots are bad. If the cons idx

is bad, it means the user needs to go to the next page, and to do so it must lock first. As
in the kernel, once a thread grabs the lock, it checks to see if the locker’s work has been
completed, and if so it simply restarts. In this case, if the cons idx slot is good again, the
work is complete (line 18). We use a PDR lock (line 16), which is a type of lock that can
detect and recover from preemption. I discuss PDR locks in Section 6.2. It is important
that userspace does not busy wait on code on another vcore without somehow handling
preemption, in accordance with the rules for vcore context outlined in Section 4.4.

Once the lock is held, the consumer thread needs to set the consumer index such that
it tracks the first slot in the next page in the linked list. But first, it must wait until the
kernel has posted the new page. It is possible that the kernel is in the process of adding a
new page to the linked list. This information is stored at the top of the current page of slots
(line 25). Once the kernel posts the next page, we can set up the cons idx so consumers
can grab slots. The consumer does not need to reserve a slot for itself, since there is no DoS
risk. Note that as soon as a valid cons idx is written to the ucq struct, new consumers
can come in and immediately consume new items, even though an “older” consumer is still
holding the lock.

After setting up the counter, the lock-holder’s next job is to free the old page of consumed
items. Before discarding the old page, the consumer needs to be sure there are no other
consumers still accessing the old page. Even though we hold the lock, that lock only protects
threads mucking with the list metadata — a previous consumer could have just claimed the

CHAPTER 5. EVENT DELIVERY 99

last slot and is still copying out the message. We statically know how many items there are
on the page, and the per-page variable nr cons tracks how many messages were consumed,
similar to a reference count. Only when all the messages were consumed can the consumer
proceed to free the page (line 28). When the consumer thread waits here, it has no idea
which vcore it may be waiting on, so cpu relax vc() must be given the vcore id of the
consumer, as discussed in Section 6.2.

Similar to the kernel’s side, the consumer simply does an atomic swap the old page with
the spare pg, making the old one the spare. If there already was a spare, then we have too
many pages and need to munmap() the old spare (line 36). The consumer only calls munmap()
when we are shrinking a UCQ that was greater than two pages. Finally, after unlocking, the
consumer thread tries again from the top (line 40). Recall that a new consumer could have
arrived and consumed any remaining messages, and the queue could be empty.

Notes on UCQs

There are a few other subtle points involved with the synchronization and maintenance of
the page lists.

The consumer only attempts to claim good slots, never bad ones. Yet while claiming the
good slot, the cons idx could be advanced to a bad slot, if the slot claimed was the last good
slot on a page. It is also possible the kernel is in the process of adding an item, and has set
the prod idx equal to the same bad slot value as the cons idx. If the two indexes are equal,
the consumer thinks the UCQ is empty, and will return without waiting or otherwise trying
to get a message. The producer is in progress, but it has not completed yet. There is no
problem here; merely some potentially interesting situations where multiple consumers may
see the UCQ at different states. There is no guarantee that a consumer will see a message
before it is completely posted.

For both the producer and the consumer, once the corresponding index (prod idx and
cons idx) are set to valid entries, any new producers and consumers will take the fast path
and claim slots, regardless of whether or not the original thread is still holding a lock. It
is important to both set the page and set the slot as one atomic unit; this is why the two
values are mixed into one atomic t (a long). These index variables are special: they are
both protected by the lock and atomically incremented. The lock protects who resets them,
with the understanding that it should only be done when everyone agrees the slot is bad,
but the normal atomic operations happen lock-free.

When slots are bad, kernel producers need to wait while another producer fixes up the
state of the UCQ. The only acceptable place to spin is on the process’s hashlock. Any other
scheme will probably fail, even if all you want to do is swap the spare page and reset the
counter, since those steps need to happen atomically too. The hashlock is what ensures that
setting the spare page and resetting the counter happen atomically.

Userspace will mmap() a large section of memory and then initialize multiple UCQs with
pages from that range. When a UCQ grows and shrinks, that mmapped region may fragment
slightly. Additionally, the mmap() and munmap() calls add in overhead. One optimization

CHAPTER 5. EVENT DELIVERY 100

that could be added to UCQs would be to expand the spare page to be an array of spare
pages. We would only need memory mapping operations when the array was empty or full,
thereby amortizing the costs of those system calls. In essence, having n spare pages allows
the UCQ to only require mmaps when growing or shrinking beyond n + 1 pages.

Regardless of the number of spare pages or the lack of contention, the user and the kernel
need to lock every time they switch the active page. These swaps occur every 127 messages
currently; the messages are 24 bytes, but with the added bool in the message container, the
unpacked struct is 32 bytes. That can be optimized if the need arises.

It is possible for userspace from any process to produce events, if it has access to the
memory of the UCQ. If the UCQ’s current page is not full, any code can follow the common-
case path where slots are good. If the slot is not good, the program would need to make a
syscall to have the kernel send the event.

A final note on UCQs is that they can be used in any operating system, not just Akaros.
All that is required is a shared memory region and mmap(). Of course, the UCQs are part
of a larger system: any OS that uses them needs to do something with the events once they
are delivered.

5.2 The Event Delivery Subsystem

UCQs are one part of a much larger event delivery subsystem in Akaros. Akaros events are
very flexible, allowing userspace control over which events are received, how they are received,
and on which core they are received. The primary abstraction is the event queue, which
encapsulates both the UCQ and the various configuration parameters. For any activity that
userspace wants to receive an event, it merely provides a pointer to a struct event queue

to the kernel. Userspace can make as many or as few event queues as it likes: a single event
queue can be used by multiple producers and consumers.

In this section, I outline the basics of the event queues and how userspace can use them.

Event Queues

To get started, let us start with the structures.

struct event_msg {

uint16_t ev_type;

uint16_t ev_arg1;

uint32_t ev_arg2;

void *ev_arg3;

uint64_t ev_arg4;

};

struct event_mbox {

CHAPTER 5. EVENT DELIVERY 101

struct ucq ev_msgs;

bool ev_check_bits;

uint8_t ev_bitmap[(MAX_NR_EVENT - 1) / 8 + 1];

};

struct event_queue {

struct event_mbox *ev_mbox;

int ev_flags;

bool ev_alert_pending;

uint32_t ev_vcore;

void (*ev_handler)(struct event_queue *);

};

struct event_queue_big {

struct event_mbox *ev_mbox;

int ev_flags;

bool ev_alert_pending;

uint32_t ev_vcore;

void (*ev_handler)(struct event_queue *);

struct event_mbox ev_imbox;

};

An event queue is made up of an event mailbox and various configuration parameters. A
mailbox is a UCQ and a bitmap with one bit per event type. For any event queue, a process
can request either a payload, which is sent to the UCQ, or a bit, which is set in the bitmap.
Whether or not a bit is set is controlled by a flag in ev flags.

The mailbox is only ever accessed through the ev mbox pointer. The mailbox itself can
be inside the event queue struct, as is done with the “big” version, or it can be somewhere
else in memory. Multiple event queues can actually point to the same mailbox, but with
different flags and other settings. Recall from Section 4.2 the per-vcore “preemption data”
structure (known as the VCPD):

struct preempt_data {

struct user_context vcore_ctx;

struct ancillary_state preempt_anc;

struct user_context uthread_ctx;

uintptr_t transition_stack;

uintptr_t vcore_tls_desc;

atomic_t flags;

int rflags;

bool notif_disabled;

bool notif_pending;

CHAPTER 5. EVENT DELIVERY 102

struct event_mbox ev_mbox_public;

struct event_mbox ev_mbox_private;

};

Note that there are two mailboxes per vcore for various messages. When setting up event
queues to deliver events to these mailboxes, userspace simply sets the ev mbox pointer to
one of those addresses. When a 2LS calls handle events(), Parlib code handles the events
in both of these mailboxes. I will discuss the distinction between the two types of mailboxes
shortly.

The other event queue setting of important is the vcore field. Certain event queue
options take a vcore as a parameter, such as which vcore gets notified (IPI) when an event is
delivered to the event queue. One thing to note is that if an event queue’s mailbox pointer
is clear, the kernel will send the event to one of the VCPD mailboxes.

Every event message has a type field (ev type). When userspace handles the events in
an event queue, it runs a series of functions from a table of function pointers indexed by the
event type. Applications using Parlib can register multiple event handlers per event type;
when an event fires, each handler will run with both the payload from the event and a void

*arg set up during handler registration. This setup is very similar to interrupt handlers in
an operating system. One very nice feature of having multiple event handlers per event is
that event tracing becomes simply registering a debugging event handler.

Event Queue Options

There are a variety of flags for the event queue that the kernel takes into account when
sending events. Some are trivial, and others expose important details about events and
MCPs. I will discuss the important points below.

• EVENT IPI: The user wants the kernel to notify a vcore after sending the message to
the mailbox.

• EVENT NOMSG: The user does not want a full message (with payload); the kernel sets a
bit instead.

• EVENT VCORE APPRO: If sending an IPI, send it to where the kernel thinks most appro-
priate, currently only used for certain preemption scenarios.

• EVENT VCORE MUST RUN: Only send to a vcore that is either running or will run the next
time the process starts up.

• EVENT INDIR: Post the event to the event queue, but then send an indirection event
(indir) to the vcore’s mailbox that points to the original event queue. These are useful
for messages that must be unique, since multiple indirs can be sent for a single message.

CHAPTER 5. EVENT DELIVERY 103

• EVENT SPAM PUBLIC: Send the original message to at least one vcore guaranteed to
either run, or have its messages checked by another vcore, ensuring the process reads
the message.

• EVENT SPAM INDIR: If the kernel is sending an indir, this flag ensures the kernel will
spam the indir so that the process is guaranteed to see the message.

• EVENT NOTHROTTLE: When sending indirs, normally the kernel will not send multiple
indirs for the same event queue, to cut down on message traffic. This flag disables that
optimization.

• EVENT VCORE PRIVATE: If the kernel is sending to a VCPD mailbox, send it to the
private mailbox.

The distinction between public and private mailboxes for a vcore is about which vcores
may handle the messages in the mailbox. The private mailboxes will only be handled by code
running on the vcore that owns the mailbox. The public mailboxes may be handled by other
vcores — a common occurrence when recovering from a preempted vcore. When userspace
chooses which type of mailbox to use for an event queue, the developer should ask whether
or not the event must be handled by the target vcore. Examples of events appropriate for the
private mailbox include messages to reschedule the current thread, run another thread, or to
profile the current thread. All of these are very particular to which vcore runs the handler.
Events sent to the public mailbox include various process-wide notices, such as “vcore 6 was
preempted” — this can be handled by any vcore.

Indirection events (indirs) are important for scenarios where a message can only be han-
dled once. For example, the message that a syscall completed should only be handled once;
otherwise the job of the 2LS is much more difficult. In this case, the original message is
posted to the mailbox pointed to by the event queue, but then another message of type
EV EVENT with a payload containing the event queue pointer is sent to the vcore. The origi-
nal message exists only once, but multiple indirs can be sent that direct vcores to check the
event queue. Exactly one vcore will extract and handle the message; subsequent consumers
will not find the message in the UCQ.

Typically, there will not be multiple indirs for a message, but the level of indirection is
important in certain circumstances when the kernel is trying to make sure userspace received
the indir. Indirs are another example of the design tactic of “safely poking”. It is harmless
to send an indir to a vcore to look at another event queue, since that event queue ensures a
single copy of a message exists.

Spamming messages is when the kernel guarantees that the process will receive the mes-
sage and will wake up sleeping processes so they handle the message. Multiple vcores may
receive these messages, typically in the public mailboxes. The particulars of how spam-
ming works are described below in Section 5.3. The important part for now is that the
message will be handled at least once, regardless of the process concurrently yielding vcores

CHAPTER 5. EVENT DELIVERY 104

or being preempted. However, the message may be handled multiple times, and in certain
circumstances, old, stale messages may linger in mailboxes of offline vcores.

Note that spamming only relates to the mailboxes where events are sent; as with all cases,
IPIs are an additional option. If the EVENT IPI flag is set, every time the kernel sends an
event to either an event queue or a vcore’s mailbox, it will attempt to notify the appropriate
vcore. A spammed message will be seen at some point in the future, specifically the next
time the targeted vcore enters vcore context and handles events. Notifying a vcore is the tool
to make sure that happens immediately, since notification puts the vcore into vcore context.
Otherwise, a vcore may be running a uthread for a long period of time. There are two things
of note here. Regardless of the IPI flag, if the kernel sends a message to a vcore (spammed
or an indir), it will set notif pending to ensure the vcore sees the message before leaving
vcore context. Additionally, a vcore must go through vcore context to yield to the kernel,
and the kernel will ensure that the vcore does not yield while notif pending is set.

The SPAM INDIR option applies to sending indirs. It is an instruction to the kernel to
spam indirs to vcores, guaranteeing a message is received. It is not clear to me whether or not
an application would ever want an indir without the guaranteed reception. If a message can
be handled only once, is its nature such that it must be handled exactly once? Supporting
both spammed and un-spammed indirs comes at no cost, so I have kept the option in place
until we have more experience with event queues.

An important detail to note is that spamming and notifications (IPIs) leverage an Akaros
design principle: make spurious messages harmless. First discussed in Section 3.2, safe
spurious events, sometimes referred to as “safe poking”, provide a layer of indirection that
allows me to avoid certain race conditions and grabbing locks. In the case of event delivery,
it allows me to send multiple messages to different mailboxes to poke vcores to check the real
underlying event queue. Indirs and any spammed message are spurious. Similarly, even the
notification code can send spurious IPIs. Within the kernel, the kernel does not even bother
locking the process; instead it sets notif pending and makes an unlocked read to determine
the physical core id, and sends the notify() kernel message. If the message was sent to
a stale core, the handler notices and ignores the message. Likewise, the notif disabled

flag could be unset at the time of sending the message, but then turned on by the time
the IPI traps the remote core. Again, the kernel message handler makes the final check
before carrying out any actions. Finally, vcore context itself is designed spuriously; other
than performance, there is no harm in dropping a vcore into vcore context. Making spurious
signals harmless greatly simplifies the system.

Guidelines for Using Event Queues

Event queues have a variety of options and use cases. A few examples and guidelines will
help clarify their usage.

First off, how does userspace actually use event queues? Any event queue pointer can
be passed to the kernel for a particular event. The kernel maintains a rudimentary array of
event queue pointers, one for each type of event, in procdata. A process can register an event

CHAPTER 5. EVENT DELIVERY 105

queue for any of these at will. The kernel event table is not used for very much at this point.
Uthread initialization code sets up event queues for preemption handling and interprocess
POSIX signals, the latter of which sends the signal number as part of the payload.

The real power of the event queue pointer is that they can be passed to the kernel in
any context. The kernel event table is just one place where userspace can sign up for an
event. Any subsystem, and any future system, that wants to send an event merely needs a
way to get an event queue pointer from userspace into the kernel. Furthermore, the same
event queue can be used for multiple event sources.

The most common place to drop an event queue is in a syscall struct. Recall from
Section 3.2 that all syscalls are asynchronous, with the arguments and return values in a
struct syscall in user memory. One of the fields of the struct is struct event queue

*ev q. When a 2LS wants to block a uthread on a system call, it writes the ev q pointer
and sets a flag in the syscall struct, as described in Section 4.4. When the kernel finishes
the system call, it checks the flag and sends an event to the event queue.

Another case where userspace passes event queue pointers to the kernel is the alarm
service, called “#A” in the Plan 9 namespace. Kernel-implemented devices are all named
with a “#” and exist in a global namespace. Userspace can request the kernel to fire an
event after a certain amount of time. It does so by creating an alarm and writing the event
queue pointer to a control file.

Now that we know how to register for events, what settings should be used for the event
queue flags? First, is it important to receive the message, even during yields, preemptions,
and if asleep? For instance, generic syscall completion events may fit this mold, depending
on the 2LS. If so, then the flags must include a spamming flag: either EVENT SPAM PUBLIC

or EVENT SPAM INDIR.
Next, can the process handle receiving more than one copy of the message? If not and it

is spamming, then it must use an indir. If spamming is not requested at all, then the kernel
will not attempt to send multiple messages anyways. The rule is that if a message must be
unique, then it cannot be spammed. If a message (or an indir) must be guaranteed, then it
must be spammed. It is possible for an application or 2LS to build their own guarantees for
their own event queues by hooking into the preemption handler.

If it uses an indir and the handler might not return, then EVENT NO THROTTLE must be
set. The reason is that throttling tells the kernel to not send an indir for every message
in the main event queue. In this case, the kernel may notice the event queue has not been
checked and then, as an optimization, not send an indir, knowing that some vcore still needs
to handle its indir. The assumption is that once a vcore starts handling messages from an
event queue pointed to by an indir, it will do so until that queue is empty. If a handler does
not return, this assumption is broken.

Next, does the event need to be handled immediately? If so, set EVENT IPI, so that the
kernel notifies a vcore. This question is about control flow, compared to the two previous
questions which are about to whom and how many events are delivered.

Finally, does the event pertain to “vcore business”, meaning it is only appropriate for
the target vcore to receive the message? If so, set EVENT VCORE PRIVATE.

CHAPTER 5. EVENT DELIVERY 106

Looking at a few event queues in particular:

• Pthread syscall completion: INDIR, IPI, and SPAM INDIR. The 2LS can only handle
one message per syscall (INDIR), and it must receive the message (SPAM INDIR). The
IPI is so that the 2LS can immediately notice when a thread unblocks and request
additional vcores if necessary.

• #A alarm service: IPI and SPAM PUBLIC. The alarm service can handle multiple mes-
sages. The messages are actually just a “poke” to check for any expired alarms, since
multiple alarms in userspace are multiplexed over a single kernel alarm. Any extra
messages will just check the list again. The spamming is necessary to wake up the
process or otherwise make sure we do not miss an alarm.

• Per-vcore alarms: IPI and VCORE PRIVATE. Kevin Klues built a per-vcore alarm service,
initially used for profiling, using #A. This alarm system only runs when the vcore runs,
hence the lack of spamming options. The alarm is particular to the vcore, and not the
process in general, so the private flag is set. The private flag is incompatible with
spamming. Note that both the per-vcore alarms and the process-wide alarms both use
the underlying #A service — the only difference is the flags to the event queues.

• Early Single-Core Process (SCP) syscall handling: IPI and NO MSG. Even SCPs can
handle events, though since they are not MCPs, many of the options related to vcores
are meaningless. In general, SCPs are treated as if they run on vcore 0. In the case of
early syscalls before Parlib initializes, userspace will not actually handle their events,
and sending no message payload is appropriate.

There are a few other things programmers that use event queues should know.
For one, SCPs can receive events, with payloads. Very early on in the life of an SCP,

while the program is still running glibc code, such as ld.so, events are not available. As
soon as the Parlib code initializes, regular SCPs can receive events. They actually use vcore
context for Vcore 0, but they are not pinned to a core. Using vcore context in this manner
is similar to using a signal handling context in other Unix systems, and it benefits from
sharing code with the more common MCP operations. From the kernel’s perspective, very
little event code changes to support SCPs.

Under certain circumstances, the kernel may send events without an event queue. One
example is the sys self notify() syscall, whereby a process can notify one of its vcores. In
these cases, the kernel sends directly to a vcore’s mailbox, since otherwise the kernel would
not know to which mailbox to post the event. I considered reflecting unhandled traps and
faults in a similar manner, as an event without an event queue, delivered to the vcore that
had a faulting uthread. This approach is inappropriate and buggy; the fault is a property
of the thread itself and should stay with the thread. There are scenarios where the event
could be handled when the thread that triggered the fault is no longer the current uthread,
possibly tricking the 2LS into thinking a different thread faulted.

CHAPTER 5. EVENT DELIVERY 107

There are two parts to event queues that provide levels of indirection: the indirs and the
ev mbox pointer, and both can be used in different ways. For instance, a 2LS could set up a
big event queue, with the mailbox pointing to the storage space in the event queue, set the
flag to EVENT IPI, and then poll that event queue in the scheduler-specific vcore entry().
Alternatively, the 2LS could set up a small event queue and point ev mbox at a vcore’s
private mailbox and set the IPI flag. These approaches are almost equivalent; the difference
is that all vcores would poll and could receive the messages in the former case, while only
one vcore could receive messages in the latter. Either way, both the indirs and the mailbox
pointer are tools for redirection, and can be used any way a programmer wants.

I also built application-specific event handling into the userspace event subsystem. An
application can place a handler function pointer in the event queue (ev handler()) and set
an aptly named flag EVENT JUSTHANDLEIT, and the handler will run in vcore context. This
approach differs from the usual table of event handlers in that the ev type of the event does
not matter — this particular handler will run regardless of the message that is sent to the
event queue. Another option exists (EVENT THREAD) where the event code will ask the 2LS
to spawn a thread to run that handler. The 2LS does not actually have to spawn a thread; it
can wake up a sleeping thread or do whatever it wants, but the intent is that the handler is
executed in a thread’s context. Handling events in threads is safer since uthreads can block
and fault, while if a vcore faults the process dies.

No existing 2LS uses these capabilities yet, but they are examples of the sort of thing
that can be done. I am sure some of these options will be removed and others will be added
as the system matures. There are many options available, and the changes required amount
to a very small amount of code.

As one example of a future feature, I could have a 2LS in which uthreads block on event
queues directly. This approach would be very similar to the existing EVENT THREAD option,
in which a 2LS could have a per-vcore pool of uthreads to service events in response to the
spawn thread() upcall. The slight difference is the programming of the uthreads: instead
of exiting to sit in a pool, they could block on a specific event queue. Blocking on an event
queue requires more bookkeeping, but it is a little more powerful in that the queue can be
used to hold work until a uthread is ready to handle it. In contrast, the spawn thread()

upcall expects the event to be handled right away; if the per-vcore uthread pool is empty,
the 2LS needs to store the event until a uthread becomes available.

Imagine the uthread blocks on an empty event queue, attempting to extract a message.
When an event arrives, the uthread wakes up and receives the message as a return value to
the blocking call, handles the event, then reblocks. An application could ship work to vcores
in this manner, where the per-vcore scheduler simply checks its per-vcore event queues and
runs uthreads until they block again. No IPIs would be needed, since the vcore checks its
queue whenever it runs out of work to do. Regardless of whether uthreads block directly on
an empty event queue or if the 2LS maintains a pool of generic uthreads for event handling,
the event queue can be used as a means of shipping work.

Not only could the application ship work between its cores in this manner, but the
kernel could also ship work to userspace, without syscalls. A common scenario involves

CHAPTER 5. EVENT DELIVERY 108

an application, such as a webserver, listening on a socket for incoming calls. With minor
changes to the kernel, we could modify the listen syscall to send an event containing the
file descriptor of the incoming connection instead of returning via the usual syscall paths.
(Actually, there is no listen syscall; to listen in Plan 9, you simply open a file such as
/net/tcp/123/listen, but that is a minor point.) The kernel sends the event directly to
userspace; it can send events to remote cores or queue them up until the kernel returns to
userspace. In the latter case, the application could have requested to receive the network
interrupt on one of its cores for cache locality reasons. As the workload changes, userspace
can increase the pool of uthreads or request more vcores if the event queue’s length grows
too long.

It should be noted that UCQs may not be suited to unlimited inbound connections on
a socket. Although the kernel would run out of memory in the networking stack before a
process ran out of memory in the UCQ, it may be nice to have some form of back-pressure
from the application. Clearly we can have a parameter to listen that limits the amount of
new connections in an opening phase. A more elegant solution could be to use BCQs instead
of UCQs for this particular event handler. The event system is designed such that BCQs,
or any other type of delivery system, could be used inside an event mailbox. Of course the
BCQs could overflow and are not suitable for all event types, but in the case of the listening
socket, the kernel could simply drop the connection.

Ultimately, there are many options for event queues and many opportunities for future
growth. Most new features will be developed in particular second level schedulers. Those
features that are sufficiently powerful or general to all 2LSs will be implemented in Parlib
so that all schedulers can use them.

5.3 Never Miss an Important Event

An important aspect of event delivery is the ability to guarantee the process sees specific
events. When an event queue has the EVENT SPAM PUBLIC flag or the EVENT SPAM INDIR flag
with an indir, the kernel and user work together to make sure the process will handle the
event.

Missing events is a more difficult problem for M:N, core-based systems than 1:1 thread-
based systems. For 1:1 systems, the kernel just sends the event to the kernel task, and the
next time that thread runs it will receive the message. Internally, the kernel deals with
Saltzer’s “wakeup waiter” problem[94] — the race between a waiter that sleeps and a waker
that signals the waiter. Unix signals, for instance, interrupts the thread and runs a signal
handler on its next execution. With process groups in 1:1 systems, the kernel just needs to
pick a particular kernel task and deliver the signal.

With MCPs, the difficulty lies in the fact that a vcore may stop running and might never
run again. With 1:1 models, threads always run again, until they are dead. The underlying
issue is that MCPs manage their own vcores, and with these capabilities comes difficulties
and responsibilities. One of those responsibilities is to work with the kernel when yielding a

CHAPTER 5. EVENT DELIVERY 109

vcore to not miss a waking event. Event delivery is powerful and flexible; this power came
from decoupling the event delivery from the vcore’s execution and control flow. Now we
need to deal with the cases where the application may want to recouple those by basing its
control flow decisions on a particular event.

For an example of why it is important to not miss events, consider an MCP with one
vcore that issued a blocking system call. The system call could be a read on a socket, or
some other blocking call. Until the syscall completes, the process may have no work to do
and want to yield. If the last vcore starts to yield right as the event fires, it is possible the
vcore does not see the event and yields forever. Contrast that scenario with synchronous
syscalls on a 1:1 threading system; in the latter case, when the syscall completes the thread
just restarts — the kernel handled everything. In the 1:1 system, userspace did not have the
opportunity to perform work while the syscall was blocked, but it also did not need to deal
with missing events.

The Pause Technique

Now is a good opportunity to discuss a technique I use for analyzing synchronization schemes
for concurrency bugs. The pause technique is very simple and can prove a scheme has a bug
by clearly expressing a situation where the scheme would fail. Given multiple, concurrent
streams of instructions, simply pause one of the streams at an opportune moment and
execute as many of the other streams as you can. The pause technique gets to the heart of
concurrency: instruction streams can interleave in any manner. As simple as it sounds, I
have found many bugs with this method. More importantly, I can convince other people or
myself that a scheme will fail in a clear manner.

In the case of missing events, the vcore code is trying to check for events and yield
(Listing 5.1) while the kernel is trying to send an event (Listing 5.2). As an added compli-
cation, the kernel may be preempting vcores in addition to any voluntary yielding caused by
userspace (not shown here). This code is clearly flawed, and is not what Akaros does, but
shows what we would like to do. A scheduler checks for events, then yields if there are no
events. If it does not receive the event, it may never wake up again — clearly a problem.
Additionally, the faulty yield code serves as a basic example of the pause technique. It can
find bugs, but it cannot prove bugs do not exist.

CHAPTER 5. EVENT DELIVERY 110

1 void some scheduler ()
2 {
3 hand le event s () ;
4 /∗ no events , d ec i de s to s l e e p ∗/
5

6 /∗ PAUSE ∗/
7

8 y i e l d v c o r e t o k e r n e l () ;
9 /∗ never run again ∗/

10 }

Listing 5.1: Vcore Yielding

1 void s y s c a l l c omp l e t i o n ev en t ()
2 {
3

4

5 vc = f i n d on l i n e v c o r e () ;
6 send event (vc , s y s c a l l d on e) ;
7 c o n f i rm v c s t i l l o n l i n e () ;
8

9

10 }

Listing 5.2: Kernel Sending Event

As a side note, debugging code in virtual machines can expose “pause based” race condi-
tions that one would never expect on real hardware. Due to the nature of virtual machines,
physical cores in the VM can be taken offline for a large quantum, based on the under-
lying host OS, creating an abnormally long pause in an instruction scheme. At the other
extreme, many bugs require running on hardware to be exposed, since the nature of those
races may require high speeds or true parallelism. When debugging, both hardware and
virtual machines have their uses.

Yield with a Little Help from the Kernel

As an alternative to using the EVENT SPAM INDIR flag, when yielding a vcore, userspace could
manually change the ev vcore setting in every event queue to point to another vcore. That
way, if the vcore yields, a message will still make it through to the process. First, userspace
needs to pick another vcore that is not concurrently yielding. Second, the 2LS must change
all event queues for the yielding vcore to the new target — including event queues set up by
the application. Finally, it must handle any messages in each of those event queues. This
approach, while correct, is a little problematic. Implied in these steps is that the 2LS must
maintain a per-vcore list of event queues or some other means of finding the vcores. If the
yielding vcore ever comes back, the 2LS will probably want to reassign the event queues back
to the vcore, which can get complicated. The vcores must also work together when a single
vcore wants to yield — once a vcore is picked as the target of event queues, it probably
should not yield until the transfer is complete. Lastly, the 2LS needs to special-case the
scenario where the last vcore yields; there is no other vcore that can receive event queues.
For all of these reasons, the “spamming” solution I use involves both the kernel and the user.
With a little help from the kernel, yielding and guaranteeing event delivery is much simpler.

One of the properties of vcore context is that so long as the per-vcore flag notif pending

is set, a vcore will not be allowed to leave vcore context. Both userspace and the kernel work
together to maintain this property, as described in Section 4.2. To reiterate, notif pending

means that a vcore has missed something and must recheck everything it normally checks in
vcore context. The exact meaning of “recheck everything” depends on who or what originally
attempted to notify the vcore and the nature of the 2LS.

CHAPTER 5. EVENT DELIVERY 111

In the case of event delivery, whenever a message is delivered specifically to a vcore’s
mailbox, the notif pending flag is set. These direct messages happen as part of the “spam-
ming” process, which applies to EVENT SPAM PUBLIC and EVENT SPAM INDIR messages. As
a side note, the kernel does not set notif pending if a vcore’s mailbox was incidentally
delivered to, such as when an event queue happens to use a vcore’s mbox for the ev mbox

pointer.
Userspace’s role in not leaving vcore context while notif pending is set involves checking

the flag after reenabling notif disabled. See Section 4.2 for more details. The kernel’s role
is a little easier — do not let the vcore yield while notif pending is set. The semantics of
vcore yield() are thus slightly different than sched yield() on other operating systems:
yield can fail.

As I have mentioned before, the problem of vcores missing messages is analogous to
Saltzer’s “wakeup waiter” problem[94]. The kernel’s event delivery system is the wakeup
code and the waiter is vcore context. Saltzer solved the problem with a “wakeup waiting”
switch, described as follows. The “wakeup waiting” switch was a variable that was cleared
by the waiter. The waiter clears the switch, checks its work queue, then blocks. The kernel’s
block routine would abort and wakeup if the “wakeup waiting” switch was set. The wakeup
code puts a task into the work queue of the waiter, then wakes the waiter — which turns on
the switch and wakes the waiter if it was blocked[94].

When vcore context is the waiter, there are a few additional issues, but the overall pattern
is the same. To complete the analogy, notif pending is the “wakeup waiting” switch. One
distinction is that there are two separate ways for vcore context to “wait.” Vcore context
could pop to a uthread or it can yield to the kernel, either of which could result in a
missed message. Both exit paths from vcore context must clear notif pending, check for
events, and then abort the exit if notif pending is set. Another complication is that the
waiter code is in userspace and the wakeup code is in the kernel. Likewise, kernel code
enforces that a yield cannot happen when notif pending is set. The “wakeup waiting”
switch is a shared-memory technique. By placing notif pending in procdata, user-level
code can easily participate in the protocol, as opposed to the kernel providing a syscall to
clear notif pending.

A final distinction arises in how the kernel performs its duties in handling the vcore’s
yield syscall and in delivering wakeup events. The kernel’s role in yielding is made more
complicated by one other goal: we want to avoid locking while sending events and to be sure
an event was delivered. Ultimately, there is a race within the kernel where some code sets
notif pending at the same time as a yield. It is impossible to guarantee that notif pending

will not be set after a yield, for instance. Instead, the guarantee is that for a successful yield
there was a moment when vcore was no longer online and notif pending was not set.

As a brief aside, the kernel maintains three linked lists of struct vcore: online, bulk-
preempted, and inactive. As far as the overall process is concerned, a vcore is online if it is on
the online list, even though there may be a slight delay before the vcore is actually running
on a specific pcore (the kernel message may be in flight at the time). The bulk-preempted
list is used when the kernel preempts the entire process at once; the invariant is that at least

CHAPTER 5. EVENT DELIVERY 112

one of the online and bulk-preempted list must be empty. The inactive list is simply all
remaining vcore structs. These lists are important for lockless event delivery.

1 void y i e l d pa th ()
2 {
3 /∗ in user ∗/
4 vc−>no t i f p end ing = FALSE;
5 wrmb() ; /∗ b a r r i e r ∗/
6 handle vc mboxes () ;
7 y i e l d v c o r e t o k e r n e l () ;
8

9 /∗ in k e rne l now ∗/
10 i f (vc−>no t i f p end ing)
11 return ; /∗ abor t ∗/
12 l o c k f o r l i s t s () ;
13 r emov e f r om ac t i v e l i s t () ;
14 wrmb() ; /∗ b a r r i e r ∗/
15 i f (vc−>no t i f p end ing) {
16 add t o a c t i v e s () ;
17 u n l o c k f o r l i s t s () ;
18 return ; /∗ abor t ∗/
19 }
20 u n l o c k f o r l i s t s () ;
21 f i n i s h y i e l d () ;
22 }

Listing 5.3: Improved Vcore Yielding

23 void e v en t d e l i v e r y ()
24 {
25 /∗ in k e rne l ∗/
26 vc = f i r s t a c t i v e v c () ;
27 while (vc) {
28 send vc msg (vc) ;
29 wmb() ; /∗ b a r r i e r ∗/
30 vc−>no t i f p end ing = TRUE;
31 wrmb() ; /∗ b a r r i e r ∗/
32 i f (vc == f i r s t a c t i v e v c ())
33 break ;
34 vc = f i r s t a c t i v e v c () ;
35 }
36 }

Listing 5.4: Kernel Spamming Event

The result of using notif pending is shown in pseudocode in Listings 5.3 and 5.4. This
is not the actual code used in Akaros, but is more of a stepping stone to understand the
issues in event delivery, as well as to explain how the kernel deals with notif pending. In
the case of the notif pending flag being 0, it can only be disabled at line 4. If userspace
clears the flag, set at line 30, then it must have received the message sent at line 28.

In the case we are interested in, notif pending is set true at some point after line 4.
The kernel’s yield path uses the “check, signal, check again” pattern that I frequently use
for shared-memory synchronization. The first check at line 10 is an optimization to avoid
grabbing a lock and performing heavier synchronization. The real protection comes from
the “signal” at line 13, whereby the yield path tells the event deliverer that the vcore is
unavailable, and the “check again” at line 15. For its part, the delivery code signals at line
30 and checks at line 32. If the check at line 32 succeeds, then the notif pending write
happened before the vcore was removed from the list, with a caveat described below. In that
case, the yield path will see it at line 15 and abort the yield. If the check at line 32 fails,
then the yield may or may not be aborted, and the sender must attempt to send to another
vcore. The repeated attempts at sending messages are why I call this “spamming” and why
messages that are spammed must be able to be received multiple times.

Note that the event deliverer looks at the active vcore list without grabbing a lock at

CHAPTER 5. EVENT DELIVERY 113

lines 26, 32, and 34. The lock protects the list from modification. It is safe to look at the
first element, since we do not follow the links (which could result in a cycle) and since the
memory for the vcore structs are never freed so long as we hold a reference on the process.
Of course, as soon as code reads the list head pointer, it could be changed.

A related issue is an apparent assumption that since the vcore is still at the head of
the list that the list did not change. This is the classic “ABA” problem[43], where pointer
equality is confused with “no state change.” I do not assume that the list did not change,
though it may appear that I do so. It is possible for a long pause at line 28 where the entire
kernel yield path executes from line 8 through 21, without userspace having received the
message. However, since the vcore is now back on the head of the active list, that means
the vcore has since restarted and will either check the message or yield again. On this later
yield, notif pending will be set and the message will be received. I do not care about a
particular yield racing with the event delivery; I care about the final yield. Note that the
ABA issue has nothing to do with the successful yield guarantee that there was a moment
when vcore was no longer online and notif pending was not set. The issue I described was
about event delivery code thinking it succeeded where it may have failed, which it did not.

There are a few other points of interest regarding the use of the first element of the
active list. First, being the first member of the active list is a weaker statement than being
“online”. A vcore could be deeper in the list and the algorithm would be just as correct.
However, the only item I can look at safely, without a lock, is the first item of the list.

More importantly, the lists are actually mainly used to find a vcore. If a sender already
knew who to send a message to, it could dispense with checking the first list and check
procinfo to see if a vcore was mapped to a pcore or not. I check the active list only when
the original target of an event queue (the ev vcore field) was unreachable (described later).
Additionally, I do not only use the active list: I also check the bulk-preempted and inactive
lists.

Finally, while the notif pending check is a powerful means of making sure userspace
does not miss a message, I actually have another flag I use for event delivery that simplifies
certain scenarios. Every vcore has a flag in procdata in the VCPD called VC CAN RCV MSG.
When this flag is set, userspace will make sure it handles that vcore’s mailboxes, which a
more limited and specific statement than notif pending’s “do whatever checks are needed
upon entering vcore context.”

All of the notif pending checks mentioned above are in fact done — they are the basis
for not missing notifications, but VC CAN RCV MSG helps in a few ways. VC CAN RCV MSG tells
us clearly if a message delivered to a specific vcore will be handled. We do not always want
to check vcore lists to confirm “onlineness,” and for almost all event delivery, the first step
is to try and send a message to a specific vcore. VC CAN RCV MSG is similar the “mapped”
flag in procinfo, but is under the control of userspace. The flag differs from being mapped
in that some vcores may be offline but still able to receive messages. One such scenarios
includes preemption recovery. Preempted vcores are not yielded: the kernel yanks them
away. Eventually some other core will handle the preemption, including dealing with its
messages. This includes bulk preempted vcores. The final benefit of VC CAN RCV MSG is that

CHAPTER 5. EVENT DELIVERY 114

in some situations the kernel determines a vcore is messageable and sets the flag. Once the
flag is set, the kernel can simply send future events.

For the most part, userspace owns VC CAN RCV MSG, but the kernel will turn it on under
certain circumstances. When a vcore starts up, the kernel knows it will start checking
messages, so it sets this flag to help out userspace. The flag does not mean a vcore is online,
only that its mailboxes will be checked. Additionally, when trying to deliver a spammed
message, the kernel may need to grab locks and be absolutely certain a vcore is either
running or will run soon; in those cases the kernel will set the flag as well.Userspace toggles
the flag in a few circumstances. Most notably, it turns off the VC CAN RCV MSG when yielding,
before checking messages; it would be around line 3 in Listing 5.3 (not shown). If a yield fails
due to a missed notification or a received message, userspace turns the flag back on. Also,
userspace will turn off the flag for another vcore in the process of handling preemptions,
discussed in further detail in Section 6.1.

To sum up the overall process, the event delivery spamming function, spam public msg(),
will first try the target vcore. If its VC CAN RCV MSG is set and the EVENT VCORE MUST RUN is
not set, then the message will be handled. Otherwise, the code hunts for a vcore to which
it can send the message.It checks the first member of the actives, then the bulk preempts,
then even the inactives (under certain circumstances). When spamming list members for
the actives or bulk preempted, we rely on list membership and notif pending as described
above. The point here is that VC CAN RCV MSG is useful for confirming that a message sent
to the vcore will be handled, but since we went through the effort of hunting for a vcore
that we know will run, we can leverage that extra work and simply be done with message
delivery. Finally, if all of those options fail, the code grabs the process’s lock to ensure that
no vcores are yielding, being granted, or being preempted. At that point, knowing there
are no concurrent changes, it is fairly easy to find a vcore, deliver the message, and set
VC CAN RCV MSG.

Ultimately, userspace and the kernel work together to make sure events can be deliv-
ered to the process, with a guarantee that the process will actually handle the message,
regardless of concurrent yields or preemptions. In the common case vcores are online and
easily messageable. Of course, Akaros needs to be able to handle the rare corner cases.
Flags like notif pending, with its ability to force vcores to remain in vcore context, and
VC CAN RCV MSG, with its ability to help the kernel easily determine if a core is messageable,
enable the system to work through those corner cases.

Dealing with these scenarios is trickier in the MCP environment — the process has control
of its vcores, and likewise it must perform its part in event delivery. Most applications and
even 2LSs will not need to worry about the intricacies of event delivery, which is dealt
with in the Parlib library. Using the correct flags on event queues and following the Event
Queue Guidelines is enough to ensure that Akaros does the right thing. The most important
guideline is that spammed messages may be handled multiple times: if this is not acceptable,
then use an indir. Many aspects of Akaros are built on a similar principle of “safe poking”,
where spurious events happen in rare situations. One source of these rare situations as well
as a major client of the reliable event delivery subsystem is when the kernel preempts vcores,

CHAPTER 5. EVENT DELIVERY 115

as we will see shortly.

116

Chapter 6

Virtual Core Preemption

Eventually, any real system with multiple applications will need to deal with revoked re-
sources. There is a progression of “system needs”, starting from the trivial and leading to
the more complex and versatile:

• Giving cores to applications is relatively easy. When making a system where processes
schedule their own threads on dedicated cores, the first thing a developer tries is simply
popping into userspace and never doing anything else.

• Of course, many applications want to do more than just execute and require some
form of I/O. Thus the kernel is involved, either directly by executing I/O syscalls
or indirectly by enabling IPC, such as for a microkernel. Still, with asynchronous
syscalls, the application can handle blocking syscalls and maintain control of its cores
and threads without serious hassles. Page faults require work, but it’s nothing that
vcore context cannot handle.

• The next complexity arises when applications want to yield their cores. After all,
many applications have a varying demand for CPU time, and to maximize system
throughput, we want those applications to yield. Yielding presents a few issues with
event delivery where it is important to not yield and miss an event, as I discussed in
the previous chapter.

• The final step in the increasingly complex progression, and the subject of this chapter,
is handling the preemption of cores.

Ideally, an application would have uninterrupted access to the entire machine. If there
is only a single application on a system, then clearly we will never preempt resources. If
there are multiple applications with static resource requests and sufficient resources to run
all applications in parallel, then, again, there is no reason to preempt resources. In those
cases where this is not the case, we are forced to schedule and allocate a limited amount of
resources among competing processes. Akaros needs to be able to handle this wider variety
of situations. Applications will have changing workloads and resource requirements, as well

CHAPTER 6. VIRTUAL CORE PREEMPTION 117

as changing priorities. The kernel scheduler will want to backfill idle resources with low-
priority MCPs. Resource preemption and revocation is a concern once we have competing
applications and fluctuating priorities and resource requests.

The Akaros scheduler currently will preempt cores from processes if those cores are pro-
visioned to other processes that have requested more cores, as I discuss in Section 3.2.
Otherwise, the current scheduler is first come, first served. Future kernel schedulers are
expected to adhere to the provisioning guarantees, but they are also free to implement other
policies. One such policy is a round-robin scheduling of blocks of cores, with long time
quanta. Another policy could attempt to optimize each application’s efficiency, compar-
ing the performance given the amount of allocated resources. Those other schedulers can
preempt cores from processes for whatever reason they want; provisioning is just one such
reason. The Akaros MCP code and user-level libraries are designed to be able to handle
preemptions under any circumstance.

Preemption is notably different than yielding and blocking syscalls. The latter situations
are under the control of the application, to some extent. Preemptions are under the control
of the kernel. A user can affect preemptions by adjusting the kernel’s policy, such as through
provisioning, but from the perspective of application code, preemptions are uncontrollable.
Of course, the kernel can warn about an impending preemption, but that does not prevent
a preemption.

The involuntary aspect of preemption makes handling preemption more difficult, espe-
cially so, given that applications are expected to control their un-preempted cores. With
the propensity for user-level spinlocks and synchronization, preempted cores raise the issue
of deadlock. Additionally, guaranteed event delivery, such as with the event queue options
EVENT INDIR and EVENT SPAM PUBLIC, becomes more difficult. The primary goal for dealing
with preemption is correctness: no deadlocks and no missed messages. A preemption can
come at any line of code in userspace, and a preempted core might never be returned. Even
worse, the preemption handler itself could be preempted. The secondary goal is performance.
The application or 2LS needs to know about the changed amount of resources so that it can
make scheduling decisions. Ideally, we also want to recover from preemption quickly, without
grabbing an undue amount of locks or requiring an excessive amount of system calls.

Dealing with preemption has always been an issue in systems that provide user-level lock-
ing and scheduling. Recall from our related work in Section 2.3, both Psyche and Scheduler
Activations attempted to solve the preemption problem, but were unable to handle all of
the cases. Psyche provided a “two-minute warning” and assumed that if a process had not
yielded by then that it would eventually run again. Scheduler Activations could not han-
dle rare corner cases, due to the coupling of events to activations. The systems that dealt
with preemption and user-level locking had a variety of issues as well; see Section 2.4 for a
refresher. As a reminder, the lessons from prior work related to preempted cores are:

• Preemptions will happen, and we need a clean way to detect preemption when it does.

• There are a variety of locking strategies, and one size does not fit all. We do not want
to build a particular locking strategy into the kernel interface.

CHAPTER 6. VIRTUAL CORE PREEMPTION 118

• Detecting critical sections is difficult: unless a thread atomically grabs the lock and
marks itself as a lock-holder, there will be false positives or false negatives.

• User-level schedulers make preemption recovery more difficult: if they choose the wrong
thread to run, they could deadlock. Additionally, the preemption handling code itself
could be preempted.

• Be prepared to handle changing resource allocations. The kernel needs to expose the
details of which physical resources are allocated to userspace. Likewise, userspace need
to be prepared to adapt and perform well as these resources change.

In the rest of this chapter, I will start by explaining how the Akaros kernel preempts
cores and describing a basic system call userspace can use to help recover from preemption.
Then I will present user-level techniques for spinlocks that provide preemption detection
and recovery, as well as adapting those techniques to custom busy-waiting synchronization.
Finally, I will describe how second-level schedulers using the uthread library recover from
the preemption of a vcore under arbitrary circumstances.

6.1 Preemption Basics

How the Kernel Preempts Vcores

At a high level, when the kernel wants to preempt a physical core, it first determines the
virtual core, and optionally sends a warning message. Userspace controls whether or not it
receives a warning event. Regardless, the kernel sets the per-vcore field preempt pending in
procinfo, which serves as a read-only timestamp of when the vcore will be preempted. The
current userspace code uses the field as a flag that a preemption is coming, and does not use
the value to decide whether or not to yield.

The time between warning and the actual preemption can be determined by the kernel
scheduler. Presumably the scheduler is preempting for a reason, and there is a policy gov-
erning how long before a core is preempted so that it can be allocated to its provisionee. The
preempt pending field and the optional event can be used in conjunction with the kernel
scheduler to implement a “two-minute warning” policy, as in Psyche. The current kernel
scheduler does not care and immediately preempts cores.

As a reminder, there are two primary shared memory structures involved with preemp-
tion, per virtual core. The struct vcore is read-only, in procinfo. The preemption data
(VCPD) is read-write, in procdata. Slightly edited versions of the structs are show below:

struct vcore {

uint32_t pcoreid;

bool valid;

uint32_t nr_preempts_sent;

uint32_t nr_preempts_done;

CHAPTER 6. VIRTUAL CORE PREEMPTION 119

uint64_t preempt_pending;

};

struct preempt_data {

struct user_context vcore_ctx;

struct ancillary_state preempt_anc;

struct user_context uthread_ctx;

uintptr_t transition_stack;

uintptr_t vcore_tls_desc;

atomic_t flags;

int rflags;

bool notif_disabled;

bool notif_pending;

struct event_mbox ev_mbox_public;

struct event_mbox ev_mbox_private;

};

After sending warnings to userspace, the kernel finally revokes, unmaps, and changes
the list membership of the vcore. All vcore structs are on one of three per-process linked
lists. The vcores themselves sit in the vcoremap in procinfo (an array of vcore structs); they
are not dynamically allocated. A vcore is on exactly one of three lists: online (mapped
and running vcores), bulk preempt (was online when the process was bulk preempted), and
inactive (yielded, singly-preempted, or has not started yet). During preemption, the kernel
moves vcores from the online list to either the inactive or the bulk-preempted lists, depending
on the overall nature of the preemption. Bulk preemption is used when all vcores for a process
are preempted at once: a time-slice of a spatial partition. When the process’s proc lock is
released, either the online list or the bulk preempt list should be empty.

To actually revoke a core, the kernel sets the VC K LOCK flag in the vcore’s preemption
data structure in procdata to signify the start of the current preemption, increments the
nr preempts sent field, and sends the preempt() kernel message to the physical core.
The kernel-message handler saves the currently running user context into the appropriate
slot in the VCPD: in vcore ctx if notifications were disabled, and in uthread ctx otherwise.
The kernel only cares about the notif disabled flag when it determines if a vcore was in
vcore context or not. The kernel does not care about what stack or TLS the context uses
— those values only make sense for userspace. If a uthread disables notifications, then as
far as the kernel (and user code on other cores) is concerned, that core is in vcore context.
Typically, the kernel also saves floating point state. Since a preemption is involuntary,
userspace may be in the middle of instructions that rely on the FPU’s state, unlike in when
uthread yield and create software contexts, as discussed in Section 4.4.

Note that when the kernel message interrupts the physical core, the core might have been
executing kernel code, either due to another interrupt or a system call. The current user
context is not necessarily the one interrupted by the IPI; the kernel looks to the per-cpu

CHAPTER 6. VIRTUAL CORE PREEMPTION 120

variable current ctx for the value of the user’s context. There could be many nested kernel
interrupt contexts, but the preempt() handler does not care — its job is to save the user’s
context.

After the kernel saves the user context, it sets the VC PREEMPTED flag and clears the
VC K LOCK flag. The purpose of VC K LOCK is to prevent userspace from concurrently accessing
fields that the handler updates, such as the uthread context. Without this flag, userspace
could start copying the uthread context field while the kernel is still loading it, resulting in a
corrupted uthread context. There are similar races with the FPU state. Both of these cases
are discussed further in Section 6.3 below.

VC PREEMPTED deserves special mention, since its meaning and usage is subtle. The
preempt() handler sets the flag, and the flag is cleared in startcore(). Userspace reads

the flag, but does not modify it (though it can), even after handling preemption. The purpose
of the VC PREEMPTED flag is to tell us that a vcore is offline, due to preemption, and that it
has not come back online again. Userspace uses this flag in two ways: determining if a vcore
was preempted and needs recovering, and making sure a vcore has not come back online
yet. There are various situations with preemption recovery where a remote vcore wants to
conditionally perform recovery only if a vcore has not already restarted.

It is possible for VC PREEMPTED to be set, but for the preemption to have been handled
by userspace. In short, Akaros’s preemption handler can recover from some preemption
scenarios solely through shared memory without actually starting up the vcore again. If a
vcore needs to be handled after a preemption, then VC PREEMPTED is set. The converse is
not true; VC PREEMPTED could be set, but the vcore already had been recovered — spurious
signals are safe. If VC PREEMPTED is not set, then we know the vcore is not preempted, and
handlers can simply abort. VC PREEMPTED is a subset of being offline; it is possible for a vcore
to be preempted, restart, and then yield, at which point it is offline but not VC PREEMPTED.

At the end of the preempt() handler, the kernel increments the nr preempts done

field. The two fields, nr preempts sent and nr preempts done, are used by the kernel to
maintain an ordering between the process management kernel messages. The process man-
agement kernel messages, such as startcore() and preempt(), are sent while holding
the proc lock and based on the existing state of the process. For instance, the kernel will
not send a startcore() if a vcore is already online. Likewise, a preempt() will be
sent to an online vcore. The ordering on the sending of messages is managed by the kernel
when it holds the lock. However, there is no ordering guarantee between the execution of
the kernel messages on separate physical cores. As a reminder, kernel messages of the same
type sent to a particular physical core will execute in order. The nr preempts sent and
nr preempts done fields are used to establish an ordering between these messages sent to
separate cores.

To see potential issues with message ordering, consider a process with a vcore, say vcore
6, running on physical core 3. The kernel sends a preempt() to pcore 3, then immediately
sends a startcore() for vcore 6 to physical core 4. These are the steps a kernel scheduler
would perform to migrate a vcore to another pcore. The preempt() copies the running
context into the VCPD, and startcore() uses the context from the VCPD to restart the

CHAPTER 6. VIRTUAL CORE PREEMPTION 121

vcore. Thus, the startcore() must not begin to execute until the preempt() completes.
At a first glance, the previous scenario can be prevented by having startcore() spin,

waiting until the VC K LOCK field is clear. Aside the vulnerability associated with that flag
being in user-writable space, a simple flag is insufficient. Consider a startcore() for vcore
6 on pcore 3, quickly followed by a preempt() to pcore 3 and another startcore() for
vcore 6 to a new pcore 4. The preempt() executes after the first startcore() on pcore
3, due to the in-order delivery guarantee of kernel messages. However, the startcore()

on pcore 4 could execute before or concurrent with the startcore() on pcore 3, which
could result in various races and corrupted contexts.

The ordering of messages provided by nr preempts sent and nr preempts done pre-
vents these and other scenarios. Specifically, when the kernel sends a startcore(),
it also sends the current nr preempts sent. The startcore() handler will spin until
nr preempts sent == nr preempts done, ensuring the startcore() happens after the
previous preempt(), regardless of which physical core the new startcore() is sent to.
Likewise, the preempt() messages are always handled after the startcore() which they
are preempting, since kernel messages sent to the same physical core execute in the order
delivered. Thus all of the startcore() and preempt() messages for a process execute
in order. As a side note, messages like notify() are not ordered; spurious messages are
designed to be safe.

It is tempting to use nr preempts sent and nr preempts done as a signal to userspace
that preemptions are in progress, instead of using the VC K LOCK flag in the VCPD. The
reason userspace does not do so is because it actually performs a compare-and-swap on
other flags, so long as the preemption is not in progress. This technique is a slight variant
of “CAS-ing with the Kernel,” first described in Section 4.4. The difference is that with the
VCPD flags, the kernel does not actually care about the flag’s value, and the VC K LOCK is
designed to prevent userspace’s compare-and-swap from succeeding. The central requirement
of needing to change a flag conditioned on the absence of another flag remains the same,
hence the requirement that VC K LOCK shares the same atomically changeable memory as the
other VCPD flags. The main point is that nr preempts sent and VC K LOCK may appear
similar, but serve separate purposes.

Finally, after the kernel preempts a vcore, it sends an event to the process, assuming the
process has registered an event queue. The exact time of delivery depends on whether or
not the process is being bulk preempted. Bulk preemption applies when all online vcores are
preempted at the same time: a time-slicing of the spatial partition. For a typical, non-bulk
preemption, the kernel immediately sends an event. For bulk-preempted vcores, the kernel
delays sending the events until the process has at least one vcore online again. When the
kernel allocates new cores to process that was bulk preempted, the first vcores that start
up are taken from the bulk preempted list. Once the kernel has started all of the cores
given to the process, it will send preemption messages for any vcores remaining on the bulk
preempted list, and move those vcores to the inactive list. The purpose of bulk preemption
is to minimize the amount of events sent to the process. In the future, Akaros may have an
event handling mechanism where MCPs can run short handlers on LL cores, meaning they

CHAPTER 6. VIRTUAL CORE PREEMPTION 122

can handle events when they have no physical cores. In this case, after a bulk preemption,
the kernel will send a single event to alert the process that it was time-sliced.

Changing Vcores: sys change vcore()

The kernel’s role in preemption is merely to preempt and to tell the process a vcore was
preempted. Userspace recovers from preemption. It is possible, but not guaranteed, that
the kernel will grant new cores before userspace gets a chance to recover. One of the tools
for preemption recovery is a syscall, sys change vcore(), that stops the calling vcore and
starts another vcore on the same physical core. It is a kernel-assisted context-switch. For
example, vcore 6 on pcore 3 could change to vcore 4, still on pcore 3.

It may seem counter-intuitive that the kernel is necessary for a context switch, given
that one of the purposed of the MCP is fast user-level context switches. The distinction is
that the kernel is switching vcores, and the user switches threads. The kernel does not know
about threads, but it does know about vcores and must update the vcoremap, vcore lists,
and other state.

There are two arguments to sys change vcore(): the vcore to change to and a flag,
specifying whether or not the calling vcore needs to be restarted or not. If the flag, called
enable my notif, is set, then the calling vcores notif disabled flag will be clear. The next
time the vcore starts up, the kernel will start a fresh vcore at the start entry point at the
top of the vcore’s stack. In essence, the context switch is one-way: the calling context will be
destroyed. If the enable my notif argument is clear, the calling vcore wants to be restarted
where it left off, which is a more traditional context switch. In this case, sys change vcore()

is similar to Mach’s Handoff Scheduling[11] and Google’s switch to[108] primitives.
A critical part of sys change vcore() is notifying the process that the calling vcore

has gone offline. It may seem unnecessary to do so, since userspace initiated the call. The
critical detail is that sys change vcore() can fail, and when it succeeds, the caller will not
run again for a while. One obvious failure case is if the target vcore is already online. Thus
detecting the success of the syscall is not trivial from userspace.

The type of completion event that the kernel sends differs based on the enable my notif

flag. When clear, which is when the calling vcore expects to have its context resumed in the
future, the kernel sends a preemption event. In this case, the calling vcore is preempted, and
another vcore will need to handle it. One way to look at it is that the kernel preempted a
vcore, then the process uses sys change vcore() so that a different vcore is preempted.

When enable my notif is set, meaning the calling context will not run again, the kernel
sends an EV CHECK MESSAGES event. This event instructs the process to check the public
mailbox of the calling vcore. Sending this event ensures that no messages are lost and eases
the event handling code. Recall from Section 5.3 that the kernel will deliver messages to an
online vcore’s public mailbox as part of its guarantee that the process will receive “spammed”
messages. The kernel may have successfully delivered a message to a vcore’s mailbox. In
that mailbox, there could be an event or other action that triggers a sys change vcore(),
before the vcore gets to the spammed message. Since the vcore never returns, it would never

CHAPTER 6. VIRTUAL CORE PREEMPTION 123

handle the message that was successfully delivered. One option to avoid this scenario would
be to handle all messages before executing the sys change vcore(), but that is extremely
unwieldy — that strategy places unnecessary limitations on the use of the syscall. The easy
alternative is for the kernel to send an EV CHECK MESSAGES, which is sort of like an indirection
event, so that userspace handles the vcores mailbox and receives the message whose delivery
was previously guaranteed.

The handler for EV CHECK MESSAGES actually has two jobs: handle the messages and
turn off VC CAN RCV MSG for the remote vcore. Recall from Section 5.3 that when the vcore’s
VC CAN RCV MSG flag is set, the vcore is a valid target for guaranteed message delivery (unless
EVENT VCORE MUST RUN is set). VC CAN RCV MSG should not be modified by remote cores if
the target vcore is online. For this reason, the handler conditionally clears VC CAN RCV MSG

only if VC PREEMPTED with a compare-and-swap.
There are a few other technical details about sys change vcore(). For one, it is a mix

of a preempt() and a startcore(), though it runs from syscall context — it is not a
kernel message. It has similar issues as startcore() regarding the ordering of operations.
Internally, sys change vcore() will abort if the calling vcore has a concurrent preemption
and performs the bulk of its startcore() operations in a kernel message sent to itself,
similar to using self-IPIs in other operating systems. Thus the ordering of the critical parts
of sys change vcore() happen according to the same ordering rules as preempt() and
startcore(), as discussed above.

The sys change vcore() syscall is not a complete solution to preemption; it is useful
tool used by higher-level preemption handling functions. It is designed to be callable from
vcore context in any situation. The exact details of the situation determine whether or
not it is safe to set enable my notif. In the upcoming sections, I will describe the various
preemption handling functions and how they use sys change vcore().

6.2 Preemption Detection and Recovery Locks

One of the major concerns with revoking cores is that the kernel preempts a lock-holder.
Ideally, parallel programs would avoid locking when possible, but there will be scenarios
where a spinlock is the best or easiest approach to a problem. Many user-level schedulers
and runtimes attempted to handle preempted lock-holders, and Akaros is no different. I
outlined many of these systems and their shortcomings in Section 2.4.

In this section, I will describe Akaros’s approach to preempted lock-holders, called PDR
locks (Preemption Detection and Recovery). I have developed two variants of the PDR lock:
the Spin-PDR lock and the MCS-PDR lock. My primary goal is correctness; since vcores
may stop running permanently, a preempted lock-holder must not deadlock the system.
Additionally, PDR locks should not be significantly more expensive than their non-PDR
counterparts. PDR locks must be able to handle nested locking — some systems from prior
work could not handle nested locks, which are quite common in programs. Finally, PDR
locks should not require any algorithm-specific support from the kernel. There are a variety

CHAPTER 6. VIRTUAL CORE PREEMPTION 124

of locking strategies, and one size does not fit all. I do not want to build a particular locking
algorithm into the kernel interface.

The guiding principles behind PDR locks are to use the idle time of contexts spinning
on a locked lock to ensure that the lock-holder is not preempted, and that lock-holders
must atomically grab a lock and advertise themselves as the lock-holder. The performance
impact is relatively low, since we use time that would be otherwise spent busy waiting on
a locked byte. PDR locks only attempt to recover from preemption when a lock-holder is
preempted, which is the critical component of deadlock. More specifically, if the process has
only one vcore, the preempted lock-holder could be waiting on the spinning context to yield,
which is a circular wait condition. Recovering from preemption in more generic scenarios
is the responsibility of a higher-level function, described in Section 6.3. There are a few
requirements for PDR locks:

• Userspace needs to be able to detect if another vcore is preempted — the VC PREEMPTED

flag, exposed through shared memory.

• There must be a primitive to change to the lock-holder: sys change vcore().

• The contexts attempting to grab a lock must be able to identify the lock-holder or
otherwise find a way to make the lock-holder run. Typically, this requires atomically
grabbing the lock and advertising itself as the lock-holder.

The requirements for PDR locking are not specific to a particular locking algorithm or
even an operating system. Akaros provides the ability to detect preemptions and change
to a preempted vcore, which suffices. Other systems may be able to provide the same
with suitable modifications. More importantly, PDR locks provide guidelines for converting
locking strategies into preemption-safe versions, if possible. The key requirement for locking
algorithms is to find some way to atomically grab the lock and provide the spinning contexts
a way to identify the lock-holder.

On Akaros, PDR locks are used when in vcore context, with the vcoreid used as the
identifying variable for the lock-holder. Uthreads are able to use PDR locks by first pinning
to a vcore and disabling notifications, as described previously in Section 4.4. Once a uthread
has disabled notifications, it appears to be in vcore context to the kernel and user code
running on other cores. At that point, it can use a PDR lock. All PDR locks in Akaros
provide helpers to manage this setup so that they can be called from any context.

Spin-PDR Locks

As a reminder, spinlocks typically involve an atomic swap operation on a small amount of
atomically addressable memory. The lock is a word of memory and has an unlocked value,
say 0, and a locked value, say 1. Multiple threads try to atomically swap a 1 to the lock, and
whichever thread receives a 0 from the swap succeeded in grabbing the lock. To unlock, the
lock-holder simply writes a 0 to the lock variable. As an optimization, before attempting to

CHAPTER 6. VIRTUAL CORE PREEMPTION 125

swap the 1 for a 0, threads can first read the lock to make sure it is a 0. This cuts down on
cache line write traffic.

The most basic PDR lock is the Spin-PDR lock. The Spin-PDR lock is like a spin lock;
its unlocked value is −1 and its locked value is the vcoreid of the lock-holder. A simple swap
is insufficient, since a failed lock attempt would incorrectly overwrite a previous lock-holder
value. However, compare-and-swap does the trick:

1 void s p i n pd r l o c k (struct s p i n pd r l o c k ∗ pdr l ock)
2 {
3 u in t 32 t l o c k v a l ;
4 do {
5 while ((l o c k v a l = pdr lock−>l o ck) != SPINPDR UNLOCKED) {
6 en su r e vco r e run s (l o c k v a l) ;
7 cmb() ; /∗ f o r c e re−read o f l o c k v a l ∗/
8 }
9 } while (! a tomic cas u32 (&pdr lock−>lock , l o ck va l , v c o r e i d ())) ;

10 cmb() ;
11 }
12

13 void s p i n pd r un l o ck (struct s p i n pd r l o c k ∗ pdr l ock)
14 {
15 mb() ;
16 pdr lock−>l o ck = SPINPDR UNLOCKED;
17 }

The function ensure vcore runs() will check if the vcoreid stored in lock val is pre-
empted, and if so it will perform a sys change vcore(). When changing vcores, the
enable my notif flag is cleared; the calling vcore expects to run again from where it left
off. The PDR lock code knows nothing about the caller and must assume that it requires a
full context switch. For instance, the code could already hold another lock, and if it did not
return, then the system would deadlock.

There are a variety of potential outcomes from ensure vcore runs(). The common case
is that the vcore is not preempted, and we just spin like in a normal spinlock. If the vcore
was preempted and there are several other vcores checking, then potentially all of them will
attempt to change to the lock-holder. The kernel enforces that only one vcore will succeed
in the sys change vcore() call; the others will fail and start the loop again — this time the
lock-holder is online.

A slightly nastier situation can result in the vcore attempting to grab the lock to change
to a vcore that is no longer the lock-holder and possibly not even online. Once the caller
determines that the lock-holder is preempted, the caller could be preempted or otherwise
delayed long enough for the lock-holder to restart, unlock, and do just about anything.
If that vcore is offline for any reason, such as a preemption or yielding, the caller will
sys change vcore() to the target. Although this scenario is tricky, it is safe. A vcore can
sys change vcore() to any other vcore at any time without loss of correctness. The target
vcore, or perhaps another vcore, will notice the caller was preempted and deal with the
preemption accordingly. In this manner, spurious calls to sys change vcore() are similar

CHAPTER 6. VIRTUAL CORE PREEMPTION 126

to cooperative yielding or time-slicing frequently. This aspect of sys change vcore() is yet
another example of the Akaros principle of making spurious events safe. It would be much
more difficult to design a PDR lock where the caller atomically changes to the lock-holder
only if they still hold the lock.

MCS-PDR Locks

The general principle of PDR locking can be applied to MCS locks, though the corner cases
are more difficult. The one issue MCS-PDR locks need to overcome is that callers are
not guaranteed to know the vcoreid of the lock-holder. They are, however, guaranteed to
know the vcoreid of the vcore ahead of them in the queue, and by induction, the set of
spinning vcores knows the lock-holder. In general, MCS-PDR locks use a refined version of
the requirement to identify the lock-holder: vcores spinning must be able to identify another
vcore to change to, so that the spinning does not result in a deadlock.

As a refresher, a basic MCS lock is a linked list of nodes, one per thread. Each node is
the size (and alignment) of a cache line and has a lock byte that a single thread busy waits
on. The lock is passed down the list, in order, with a minimum of cache line contention.

The basic MCS lock is built around a qnode structure:

struct mcs_lock_qnode

{

struct mcs_lock_qnode *next;

int locked;

}__attribute__((aligned(ARCH_CL_SIZE)));

struct mcs_lock

{

struct mcs_lock_qnode *lock;

};

Basic MCS locks in Akaros have the following lock and unlock methods:

1 void mcs l o ck l o ck (struct mcs lock ∗ lock , struct mcs lock qnode ∗qnode)
2 {
3 qnode−>next = 0 ;
4 cmb() ;
5 mcs lock qnode t ∗ predec e s so r = atomic swap(&lock−>lock , qnode) ;
6 i f (p r edec e s s o r) {
7 qnode−>l ocked = 1 ;
8 wmb() ;
9 predeces sor−>next = qnode ;

10 while (qnode−>l ocked)
11 cpu re l ax () ;
12 }
13 cmb() ;

CHAPTER 6. VIRTUAL CORE PREEMPTION 127

14 }
15

16 void mcs lock un lock (struct mcs lock ∗ lock , struct mcs lock qnode ∗qnode)
17 {
18 i f (qnode−>next == 0) {
19 cmb() ;
20 i f (a t omi c ca s p t r ((void ∗∗)&lock−>lock , qnode , 0))
21 return ;
22 while (qnode−>next == 0)
23 cpu re l ax () ;
24 qnode−>next−>l ocked = 0 ;
25 } else {
26 mb() ;
27 qnode−>next−>l ocked = 0 ;
28 }
29 }

The algorithm involves threads atomically swapping to put themselves at the end of the
MCS queue. If they were at the front of the line, they hold the locks; otherwise they tell the
predecessor who they are, and spin until the predecessor unlocks. The predecessor, when it
unlocks, tries to remove itself from the list, conditioned on it being the only one in the queue.
If it fails, it must wait on the its successor to advertise itself before unlocking. There are also
variants of the MCS unlock that do not require compare-and-swap; see Mellor-Crummey and
Scott’s original work[69] for more details. Note that in the MCS locking algorithm, when
the lock-holder unlocks, it will busy wait on an unknown thread; this is a slight challenge for
the PDR locks. I deal with it in the same way as the threads attempting to grab the lock:
ensure someone else runs, who will eventually ensure the target runs.

MCS locks are particularly susceptible to preemption, due to the FIFO nature of the
queue. Preemption interferes with spinlocks only when a lock-holder is preempted; preemp-
tion of a thread attempting to grab a lock has little effect on other participants. If a thread
in an MCS list is preempted, other threads behind it in the queue will be delayed. The
reason is that a thread in an MCS list can be given the lock passively, while the thread is
offline. Many systems tried to customize their preemption handling scenarios to get around
the MCS queue, as I discussed in Section 2.4. The MCS-PDR locks do not suffer from any
of the drawbacks of those systems.

I developed and tinkered with a few versions of MCS-PDR locks. First I will present
the original version, called the MCS-PDRO lock. The original version suffers under extreme
load in some cases, leading me to develop a safer, slightly more expensive variant, which I
will present later.

The basic structures of the PDRO lock are the same as the MCS lock, with the addition
of the vcoreid to the qnode:

struct mcs_pdro_qnode

{

struct mcs_pdro_qnode *next;

CHAPTER 6. VIRTUAL CORE PREEMPTION 128

int locked;

uint32_t vcoreid;

}__attribute__((aligned(ARCH_CL_SIZE)));

struct mcs_pdro_lock

{

struct mcs_pdro_qnode *lock;

};

All PDR locks are wrapped with calls to uth disable notifs(), which ensure that the
calling context drops into vcore context, as far as any external observers are concerned. The
helper also pins the uthread to its vcore, which allows uthread code to call vcore id() and
save it in the qnode. By saving the vcoreid in the qnode, any thread with a pointer to a
qnode can identify the vcore owning that qnode.

1

2 void mcs pdro lock (struct mcs pdro lock ∗ lock , struct mcs pdro qnode ∗qnode)
3 {
4 u t h d i s a b l e n o t i f s () ;
5 qnode−>vcore id = vco r e i d () ;
6 mcs pdro l o ck (lock , qnode) ;
7 }
8

9 void mcs pdro unlock (struct mcs pdro lock ∗ lock , struct mcs pdro qnode ∗qnode)
10 {
11 mcs pdro un lock (lock , qnode) ;
12 u t h en ab l e n o t i f s () ;
13 }
14

15 void mcs pdro l o ck (struct mcs pdro lock ∗ lock , struct mcs pdro qnode ∗qnode)
16 {
17 struct mcs pdro qnode ∗ predec e s so r ;
18 u in t 32 t p r ed vco r e id ;
19 qnode−>next = 0 ;
20 cmb() ;
21 predec e s so r = atomic swap ptr ((void ∗∗)&lock−>lock , qnode) ;
22 i f (p r edec e s s o r) {
23 qnode−>l ocked = 1 ;
24 pred vco r e id = ACCESS ONCE(predeces sor−>vcore id) ;
25 wmb() ;
26 predeces sor−>next = qnode ;
27 while (qnode−>l ocked) {
28 en su r e vco r e run s (p r ed vco r e id) ;
29 cpu re l ax () ;
30 }
31 }
32 }
33

34 void mcs pdro un lock (struct mcs pdro lock ∗ lock ,

CHAPTER 6. VIRTUAL CORE PREEMPTION 129

35 struct mcs pdro qnode ∗qnode)
36 {
37 u in t 32 t a t a i l v c o r e i d ;
38 i f (qnode−>next == 0) {
39 cmb() ;
40 i f (a t omi c ca s p t r ((void ∗∗)&lock−>lock , qnode , 0))
41 return ;
42 a t a i l v c o r e i d = ACCESS ONCE(lock−>lock−>vcore id) ;
43 while (qnode−>next == 0) {
44 en su r e vco r e run s (a t a i l v c o r e i d) ;
45 cpu re l ax () ;
46 }
47 qnode−>next−>l ocked = 0 ;
48 } else {
49 mb() ;
50 qnode−>next−>l ocked = 0 ;
51 }
52 }

As with all PDR locks, the MCS-PDRO locks center around the busy waiting while

loops. These are the places where the code can deadlock, as well as the source for idle cycles
to make sure the lock-holder is not preempted. Unlike spinlocks, MCS locks have two places
where spinning occurs: when waiting for the lock (line 27) and when handing off the lock to
the next thread (line 43).

Threads spinning while waiting for the lock do not know the identity of the lock-holder.
However, they do know the identity of their predecessor. Each predecessor makes sure its
predecessor runs, up to the actual lock-holder. The trick is that threads atomically enter the
lock and determine their predecessor, instead of the lock-holder. The predecessor is sufficient
to make sure the lock-holder runs.

When waiting to hand off the lock to the next thread, the current lock-holder does not
know who its successor will be. However, it does know the identity of the tail of the MCS
queue: this is the last qnode, stored in the lock variable (line 42). The successor to the
current lock-holder is at the head of the MCS queue. By ensuring the tail runs, which will
ensure its predecessor runs and so on, eventually we ensure that the successor runs.

The way I have described MCS-PDR locks, it sounds like all of the preempted vcores
would percolate to the tail of the MCS queue. Picture ten vcores in a queue and five of
them are preempted. Eventually, the lock-holder and the next four vcores in line will be
online, and the last five would be offline. This is the end result of the algorithm, but it
only happens if the lock is held for a long time, compared to the time it takes to perform a
sys change vcore().

However, when a lock is held for a short duration, all of the vcores quickly lock, unlock,
then reenter the queue behind the offline vcores — all in the time it takes to perform a
syscall. Imagine a preempted vcore in the middle of the queue, and it is the only preempted
vcore in the system. By the time its successor changes to it, all of the vcores ahead of it have
grabbed and released the lock, and the lock has been passed to the preempted vcore for quite

CHAPTER 6. VIRTUAL CORE PREEMPTION 130

a long time. The sys change vcore() calls are slowly moving the preemption “bubbles”
towards the tail of the queue, but the locking and unlocking can add qnodes to the end of
the queue at a higher rate. The end result is that based on the time the lock is held and
the think time between lock acquisition, a preemption bubble will stay in the MCS queue.
It will not be the same vcore each time; that will change as the vcores cycle through the
system. Ultimately, at least one syscall is made to hand off the lock — hardly ideal.

The preempt storm I describe happens under particular circumstances, but is easily
shown with a microbenchmark (Section 6.2). It is unclear whether or not this scenario is
realistic or not; all vcores need to grab and quickly release the lock. Regardless, to explore
the issue further, I developed another version of the MCS-PDR lock. The next variant of
the MCS-PDR lock stores the lock-holder vcoreid in the lock structure. Most of the other
differences between the MCS-PDR locks follow from this addition. The first to note is that
the qnodes are stored in the lock, instead of on the stack:

struct mcs_pdr_qnode

{

struct mcs_pdr_qnode *next;

int locked;

}__attribute__((aligned(ARCH_CL_SIZE)));

struct mcs_pdr_lock

{

struct mcs_pdr_qnode *lock __attribute__((aligned(ARCH_CL_SIZE)));

uint32_t lockholder_vcoreid __attribute__((aligned(ARCH_CL_SIZE)));

struct mcs_pdr_qnode *qnodes __attribute__((aligned(ARCH_CL_SIZE)));

};

The qnodes look the same as for normal MCS locks, but the lock itself stores the qnodes.
At lock initialization time, the qnodes array is malloced. The important part is that given
a qnode, we must be able to determine the vcoreid. The newer MCS-PDR locks use pointer
arithmetic on the qnode array to do so. By contrast, the older MCS-PDRO locks store the
vcoreid in the qnode struct.

1 void mcs pdr lock (struct mcs pdr lock ∗ l o ck)
2 {
3 u t h d i s a b l e n o t i f s () ;
4 mcs pdr l o ck (lock , &lock−>qnodes [v c o r e i d ()]) ;
5 }
6

7 void mcs pdr unlock (struct mcs pdr lock ∗ l o ck)
8 {
9 mcs pdr un lock (lock , &lock−>qnodes [v c o r e i d ()]) ;

10 u t h en ab l e n o t i f s () ;
11 }
12

CHAPTER 6. VIRTUAL CORE PREEMPTION 131

13 void mcs pdr l o ck (struct mcs pdr lock ∗ lock , struct mcs pdr qnode ∗qnode)
14 {
15 struct mcs pdr qnode ∗ predec e s so r ;
16 u in t 32 t p r ed vco r e id ;
17 struct mcs pdr qnode ∗qnode0 = qnode − vco r e i d () ;
18 s e q c t r t seq ;
19 qnode−>next = 0 ;
20 cmb() ;
21 predec e s so r = atomic swap ptr ((void ∗∗)&lock−>lock , qnode) ;
22 i f (p r edec e s s o r) {
23 qnode−>l ocked = 1 ;
24 pred vco r e id = predec e s so r − qnode0 ;
25 wmb() ;
26 predeces sor−>next = qnode ;
27 seq = ACCESS ONCE(p r o c i n f o . coremap seqctr) ;
28 while (qnode−>l ocked) {
29 i f (vco re i s p r eempted (p r ed vco r e id) | |
30 seq != p r o c i n f o . coremap seqctr) {
31 i f (lock−>l o c kho l d e r v c o r e i d == MCSPDRNOLOCKHOLDER | |
32 lock−>l o c kho l d e r v c o r e i d == vco r e i d ())
33 en su r e vco r e run s (p r ed vco r e id) ;
34 else
35 en su r e vco r e run s (lock−>l o c kho l d e r v c o r e i d) ;
36 }
37 cpu re l ax () ;
38 }
39 } else {
40 lock−>l o c kho l d e r v c o r e i d = vco r e i d () ;
41 }
42 }
43

44 void mcs pdr un lock (struct mcs pdr lock ∗ lock , struct mcs pdr qnode ∗qnode)
45 {
46 u in t 32 t a t a i l v c o r e i d ;
47 struct mcs pdr qnode ∗qnode0 = qnode − vco r e i d () ;
48 i f (qnode−>next == 0) {
49 cmb() ;
50 i f (a t omi c ca s p t r ((void ∗∗)&lock−>lock , qnode , 0)) {
51 lock−>l o c kho l d e r v c o r e i d = MCSPDRNOLOCKHOLDER;
52 return ;
53 }
54 a t a i l v c o r e i d = lock−>l o ck − qnode0 ;
55 while (qnode−>next == 0) {
56 en su r e vco r e run s (a t a i l v c o r e i d) ;
57 cpu re l ax () ;
58 }
59 lock−>l o c kho l d e r v c o r e i d = qnode−>next − qnode0 ;
60 wmb() ;
61 qnode−>next−>l ocked = 0 ;
62 } else {

CHAPTER 6. VIRTUAL CORE PREEMPTION 132

63 lock−>l o c kho l d e r v c o r e i d = qnode−>next − qnode0 ;
64 mb() ;
65 qnode−>next−>l ocked = 0 ;
66 }
67 }

The newer MCS-PDR lock is fairly similar to the MCS-PDRO lock. The main additions
are the lockholder vcoreid and extra logic in the busy waiting loops.

When waiting for the lock, the use of the lockholder vcoreid variable is an optimization
— it is not guaranteed to be set. It is possible that a lock-holder gets preempted after
acquiring the lock (line 22), but before setting lockholder vcoreid (line 40). If the lock-
holder is known, the spinner can just ensure the lock-holder runs (line 35). If the lock-holder
is not known, the spinner ensures its predecessor runs.

There is a brief period where lockholder vcoreid points to the successor, but the suc-
cessor is still locked (between lines 59 and 61). It is possible the lock-holder was preempted
at line 60, but all the other vcores will think the successor should run. However, the succes-
sor will see that it is the lockholder vcoreid and know that means its predecessor should
run (line 32).

The lockholder vcoreid is not needed for correctness; it is a performance optimization.
For correctness, the only thing needed in the while loop at line 28 is that we ensure the
predecessor runs (line 33). The main benefit of the lock-holder optimization comes under
heavy contention for a shortly-held lock.

To break out of the sys change vcore() storm, which was the motivation for the newer
MCS-PDR locks, we need a vcore to handle the preemption of the vcores in the “bubble”.
If vcores only spin and check their predecessor, as in MCS-PDRO locks, then it is extremely
unlikely that an event handler will deal with the preemption first — polling is simply faster.
By using the lockholder vcoreid, vcores do not spin on their predecessor unless they need
to, which increases the chances that another vcore will deal with the preempted vcore. Typ-
ically, this is the lock-holder after it unlocks, re-enables notifications, and checks messages.

Tracking the lockholder vcoreid is not particularly expensive. There is an extra cache
line write. Having the lock-holder write lockholder vcoreid on behalf of the successor
helps a little. A final tidbit about the lockholder vcoreid is that there is a race when a
lock-holder unlocks (line 50) and sets the lockholder vcoreid to none (line 51). In between
those lines, a new lock-holder could have taken over and advertised itself. This situation is
not a problem; if vcores see there is no lockholder vcoreid, they fall back to using the
predecessor.

Although tracking the lockholder vcoreid is not very expensive, having every spin-
ning thread polling the lockholder vcoreid variable is expensive. It is a heavily con-
tended cache line that gets written on every lock handoff. To cut down on the reads to
lockholder vcoreid, the spinners only try to recover when either its predecessor is pre-
empted (line 29) or there has been a preemption since it started spinning (line 30). When
there are no preemptions, the checks at lines 29 and 30 are reads of shared cache lines.

CHAPTER 6. VIRTUAL CORE PREEMPTION 133

A final discussion point, mentioned earlier, is where to put the qnode structures. The
MCS-PDRO locks and the basic MCS locks takes a pointer to a qnode, and the caller allocates
the qnode on the stack before calling the lock method. The benefit of each thread providing
their own qnode struct is that the number of qnodes in the system grows naturally with the
number of threads. The benefit of storing the qnode on the stack are that the memory is
likely to be in the cache of the caller.

For the newer MCS-PDR locks, I opted to store an array of qnodes in the actual lock,
one for each vcore. The array wastes memory, but since uthreads pin themselves to vcores,
the lock’s memory only grows for every vcore, not every uthread. Otherwise, it would be
infeasible to store per-thread qnodes inside the lock. There are two benefits to using the
qnode array that are particular to MCS-PDR locks.

First, given a qnode pointer, we need to determine the vcoreid of that qnode. In the
stack-based qnode style, I stored the vcoreid in the qnode. Reading the vcoreid from the
qnode required a memory reference. With the array of qnodes, we can determine the vcoreid
with pointer arithmetic (lines 24 and 59).

The second reason has little to do with performance; all MCS-PDR locks must be careful
when dereferencing qnode pointers. If the vcoreid is stored in the qnode, then when a thread
attempts to read the qnode of its predecessor to determine the predecessor’s vcoreid, there is
a chance that the predecessor has already unlocked. If it unlocked, the qnode memory could
have been freed, and the thread’s read could page fault. It is actually safe for the memory to
be filled with garbage; the worst case is the locking thread ensures an arbitrary vcore is not
preempted. The original rule I used for MCS-PDR locks was that the memory used for the
qnodes cannot be freed during the lifetime of the lock. This is not completely unreasonable
for stack-based locks — the vcore stacks are never freed, for instance. Regardless, it was a
little simpler to put the qnodes in the lock.

Ultimately, it is unclear at this time which variant of MCS-PDR locks is better. They
both have their trade-offs, as we will see below.

Locking Microbenchmarks

In this section, I compare the performance of various locking algorithms. The tests were run
on the machine “c89”, which is an Intel Xeon E5-2670, 2.6GHz, with two processors, each
with 16 hyper-threaded cores. The test is a microbenchmark named lock test, which has
various options, such as the number of threads, the number of lock acquisitions per thread,
and type of lock. It runs on both Akaros and Linux, and for every lock acquisition, the
benchmark records timestamps before attempting to lock, after grabbing the lock, and after
unlocking the lock.

First, let us look at the family of spin locks. I adjusted the amount of loops for each
run so that the test ran for at least 20 msec. All measurements are in TSC ticks, unless
otherwise stated. The TSC frequency of c89 is 2.59 ticks per nanosecond. The overhead
for reading the TSC is 32 ticks. The primary metric of interest is the lock acquisition time,
which is the time after acquire− time before acquire− TSC overhead.

CHAPTER 6. VIRTUAL CORE PREEMPTION 134

Table 6.1 shows spinlock acquisition times, measure in ticks, for basic spinlocks on Linux
and Akaros, as well as Akaros’s Spin-PDR locks. The tests with one thread show the locking
overhead for uncontended locks. Four threads shows the performance under light contention,
and 31 threads shows the performance under heavy contention. For the four-thread runs,
all threads are pinned to the same socket. The 31-thread runs involve all cores across two
sockets. These do not show any particular effects of preemption; the systems are unloaded
and no special steps were taken to take away cores.

Table 6.1: Spinlock Acquisition Latency (in ticks)

Quantiles

Avg. Std. Min Max 50% 75% 90% 99% 99.9%

L
in
u
x 1 Thr 32.85 96.3 24 42780 28 28 32 268 336

4 Thr 1853 12245 24 844184 364 440 1092 56543 167629
31 Thr 19058 154476 28 8989312 528 1520 2700 592223 2309883

A
k
a
ro

s 1 Thr 32.50 50.8 28 20676 28 28 32 36 508
4 Thr 1000 42317 28 5244320 108 488 1148 2792 4853
31 Thr 30301 135596 28 2834032 1272 2584 11581 706436 1600882

P
D
R 1 Thr 46.06 47.9 40 20668 44 44 44 52 500

4 Thr 995 2980 40 74216 296 500 1344 15932 33624
31 Thr 40301 55451 40 807172 18320 58276 111792 249555 389737

The first thing to note is that contended spinlocks are terrible for tail latency, on any
operating system. The standard deviation, maximum, and large quantiles are several orders
of magnitude greater than the median. Figure 6.1 provides a look at the distribution of the
lock latency for regular spinlocks on Akaros, with four threads. For the x-axis, I zoomed in
enough to see the graphs features — the extreme outliers dominate the tail otherwise.

Spinlocks are inherently unfair; the winner of the lock depends on the caching system.
A nice way to see this is by analyzing the timestamps of each lock acquisition. Figure 6.2
plots a dot every time a thread grabbed the lock. Ideally, the lines would be solid. The
gaps represent long stretches of time when a thread was unable to win the race to grab the
lock. The solid lines represent numerous acquisitions within a short time frame — enough
that we cannot see a gap. This effect is not abysmal for an application. Presumably when
any thread grabs a lock, application work is performed. However, unlucky threads can be
delayed for long stretches of time.

Akaros’s uncontended spinlocks perform slightly better than Linux’s, especially at the
99%. This result is likely a proxy for the FTQ results from Chapter 4 — there is more
interference on Linux, with a slight effect on this microbenchmark.

The performance of the PDR locks are of more interest than the regular spinlocks. Spin-
PDR locks are about 16 cycles more expensive than their regular spin-based counterparts,
which is nearly 50%. Most of this cost is due to dropping into vcore context (pinning and
disabling notifications), which involves a function call, various increments, and a branch or

CHAPTER 6. VIRTUAL CORE PREEMPTION 135

0 2000 4000 6000 8000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

4−Thread Lock Acquisition Latency

TSC Ticks

D
en

si
ty

Figure 6.1: Akaros Spinlocks, 4 Threads, Acquisition Latency

0.0e+00 5.0e+07 1.0e+08 1.5e+08

T
hr

ea
d

 0
T

hr
ea

d
 6

T
hr

ea
d

 1
2

T
hr

ea
d

 1
8

T
hr

ea
d

 2
4

T
hr

ea
d

 3
0

Lock Acquisition Timestamps

Time (TSC Ticks)

Figure 6.2: Linux Spinlocks, 31 Threads, Acquisition Times

CHAPTER 6. VIRTUAL CORE PREEMPTION 136

two. When instructing the benchmark to run from vcore context, a one-thread PDR lock
takes 33 cycles on average, with similar quantiles. Incidentally, the lock’s held time is greatly
increased, since enabling notifications is more expensive than disabling them.

Another performance issue may be due to using compare-and-swap instead of a simple
atomic swap. Note the Spin-PDR’s average performance with 31 threads; it is three orders
of magnitude higher than a single thread. This is the case regardless of whether the test
fakes vcore context or not. Spin-PDR locks are basically the same as regular “test, test and
set” spinlocks, with the addition of ensuring the target vcore runs, and using compare-and-
swap instead of atomic swap. Just for testing, removing the call to ensure vcore runs()

made little difference to the lock’s performance, leaving compare-and-swap as a likely culprit.
Regardless, spinlocks are the wrong tool for a heavily contended lock with a large number
of threads.

Spin-PDR locks are reasonably fast at low scale, and they can recover from preemption.
Of course, nothing is free — the ability to recover from preemption comes at a cost. Let
us look at MCS locks and see how the different variations compare in Table 6.2. When
analyzing MCS locks, keep in mind that they are queue locks, and the lock acquisition time
naturally increases as a factor of the number of threads in the system. Once a thread joins
the end of the queue, it must wait for O(n) locks and releases until it acquires the lock.

Table 6.2: MCS Lock Acquisition Latency (in ticks)

Quantiles

Avg. Std. Min Max 50% 75% 90% 99% 99.9%

L
in

u
x 1 Thr 38.46 92.3 32 21876 32 36 36 272 372

4 Thr 919.4 273.5 32 61488 908 920 936 1288 1984
31 Thr 16303 430868 32 81945846 12572 13764 14940 16632 32699

A
k
a
ro

s 1 Thr 35.46 27.2 32 2272 32 36 36 36 300
4 Thr 841.0 88.0 32 20916 832 864 888 944 1408
31 Thr 10718 831 36 20592 10576 11236 11864 13000 14388

P
D

R
O 1 Thr 52.36 66.8 40 20196 48 48 52 52 600

4 Thr 836.5 134.1 56 17716 848 896 944 1140 1648
31 Thr 16520 1585 64 30268 16488 17452 18756 19836 20328

P
D

R
N 1 Thr 58.4 58.6 48 19388 56 56 56 56 548

4 Thr 870.6 113.4 48 21268 864 920 976 1124 1480
31 Thr 17595 2491 364 37924 17504 19264 20880 23768 25692

As expected, basic MCS locks on Akaros perform better than on Linux in all categories,
due to the lack of interference. Linux’s MCS locks have a particularly long tail. The PDR
locks, as expected, are more expensive in the uncontended (one thread) case. PDR locks
add a few extra instructions or cache line fetches to the common case. For functions that are
relatively small and simple like locks, those additions affect the overall performance. These

CHAPTER 6. VIRTUAL CORE PREEMPTION 137

extra overheads are the price of preemption detection and recovery. Under a light load (four
threads), the PDR overhead is lost in the noise.

Figure 6.3 shows the approximate distribution of lock latency for all four locks with
31 threads. The long tails are not visible, since the density is so low, so I zoomed in the
graph on the main body of the distributions. This graph tells a similar story as Table 6.2.
One additional note is that the new MCS-PDR locks (PDRN) have a very normal looking
distribution. This feature has been a constant for the PDRN locks throughout numerous
test runs.

0 10000 20000 30000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04
1e

−
03

31 Thread MCS Lock Acquisition Latency

TSC Ticks

D
en

si
ty

Linux MCS 31
Akaros MCS 31
Akaros MCS−PDRO 31
Akaros MCS−PDRN 31

Figure 6.3: MCS locks, 31 Threads, Acquisition Times

Despite the regularity of the PDRN locks, they have a greater overhead than the PDRO
locks. As described earlier, PDRO locks suffered under heavy lock contention when vcores
were preempted. To test the various locks under preemption, I ran the lock benchmark while
periodically preempting two vcores for 10 milliseconds at a time.

The most effective way to see the impact of preemption is to look at the lock throughput.
Figure 6.4 shows the basic MCS lock’s throughput, under preemption. It is no surprise that
the lock throughput drops to 0 when a vcore is preempted. If the preempted vcore was in the
MCS queue, no other core can make progress once the preempted vcore is granted the lock.
Much like with barriers, the entire system waits on one thread that is not running. Any
system using MCS locks must be concerned with this sort of interference, which MCS-PDR
locks are designed to avert.

What is more interesting is Figure 6.5, which is the behavior of the PDRO lock while
being preempted. The throughput drops very low, to around 250 locks per msec. The system

CHAPTER 6. VIRTUAL CORE PREEMPTION 138

●

●
●
●●
●

●

●

●●●●●●●●●●●●●●●

●

●
●

●
●

●
●

●
●

●

●●●●●●●●●●●●●●
●

●

●●
●

●
●

●
●
●

●

●●●●●●●●●●●●●●

●

●

●
●

●

●

●

●
●
●

●●●●●●●●●●●●●●
●

●

●

●●
●
●

●
●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●
●

●●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●
●

●●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●

●

●●●

●

●

●
●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●●●●

●

●

●●
●●

●
●
●

●

●

●●●●●●●●●●●●●●

●

●

●
●

●●
●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●
●

●

●●

●

●●●●●●●●●●●●●●

●

●

●

0 100 200 300

0
20

00
40

00
60

00
80

00

Basic MCS Lock Throughput

Time (msec)

Lo
ck

s
pe

r
m

se
c

Figure 6.4: Akaros, Basic MCS locks, 31 Threads, Lock Throughput

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●●●

●●

●

●

●

●●●●

●

●

●

●

●

●

●●

●●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●●●●●

●

●
●●

●

●

●
●
●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●
●
●

●●

●
●
●

●
●
●

●

●

●●

●

●
●●
●

●

●●

●

●

●

●

●●●●●●●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●●●●●

●

●●
●

●●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●●●

●

●

●
●●

●

●

●

●
●
●

●

●

0 50 100 150 200 250

0
10

00
20

00
30

00
40

00
50

00
60

00

MCS−PDRO Lock Throughput

Time (msec)

Lo
ck

s
pe

r
m

se
c

Figure 6.5: Akaros, MCS-PDRO locks, 31 Threads, Lock Throughput

is making progress, albeit at a slow rate. This anomaly is the “preemption storm” described
above, which was the motivation for the PDRN locks, shown in Figure 6.6. Under heavy

CHAPTER 6. VIRTUAL CORE PREEMPTION 139

●

●

●

●
●

●
●

●
●
●

●

●
●

●

●

●●
●

●
●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●●

●

●

●

●●

●

●

●

●

●
●
●
●
●●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●
●

●

●●

●●
●
●
●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●●●●●

●
●
●

●

●

●

●

●

●●

●

●●

●

●
●
●
●

●
●

●●

●

●
●●
●●
●●●

●

●
●

●●

●

●

●
●
●
●

●
●

●
●●

●●
●
●

●

●●●

●●

●●●

●

●

●

●

●

●

●

●

●
●
●
●●

●
●

●●
●●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●●
●
●

●
●
●

●

●

●
●

●●●
●

●

●

●

●

●
●

●

●
●●

●

●●
●

●

●
●
●

●●
●

●
●
●

●

0 50 100 150 200 250

0
10

00
20

00
30

00
40

00
50

00

MCS−PDRN Lock Throughput

Time (msec)

Lo
ck

s
pe

r
m

se
c

Figure 6.6: Akaros, MCS-PDRN locks, 31 Threads, Lock Throughput

load, the PDRO locks are unable to fully deal with preemption and stabilize on a lower
number of vcores, and each lock handoff involves at least one syscall. If we run lock test

with PDRO locks, preempt one vcore, and never allocate another core to the benchmark,
the PDRO locks are very unlikely to recover.

Another way to analyze the anomaly is by looking at the number of EV VCORE PREEMPT

messages sent. Every call to sys change vcore() triggers either a EV VCORE PREEMPT or a
EV CHECK MSGS event. In the case of PDR locks, the sys change vcore() calls will trigger a
EV VCORE PREEMPT event. The benchmark instruments the event handlers for these messages
by registering extra event handlers, which track the count of events. The PDRN locks had
420 preempt messages, which includes both the sys change vcore() calls and the original
preemption message. The PDRO locks had 20,893 preempt messages — a factor of 50 more
than PDRN.

Ultimately, both variants of the MCS-PDR lock, as well as the Spin-PDR lock, enable
userspace to recover from the preemption of a lock-holder. It is up to the programmer
to choose the appropriate lock for a given workload. For lightly-contended locks, Spin-PDR
locks are the simplest and most effective choice. For more heavily-contended locks, the choice
is between MCS-PDRO and the MCS-PDRN locks. The current Akaros libraries default to
the PDRN lock, though the correct choice depends on both the lock contention and the
expected amounts of preemption. Finally, in extreme situations, an application could use
the non-PDR locks, so long as that application is never preempted. If an application will be
run only with provisioned cores, then at compile time the developer can choose the faster

CHAPTER 6. VIRTUAL CORE PREEMPTION 140

locks, with the understanding that the program will need to be recompiled to be safe from
preemption.

Custom Synchronization

Application and library writers can use the basics of PDR locks to build their own synchro-
nization primitives. Just recall one of the vcore context rules: never busy wait on user-level
code without handling preemption in some manner. Otherwise, there is a chance of deadlock.

Certain synchronization algorithms are not good fits for vanilla PDR locking. For in-
stance, Ticket Locks[22] are a FIFO spinlock, where each thread increments a counter to
join the locking group, similar to taking a number at a bakery. When the lock-holder un-
locks, it increments the “next” counter. Both counters are stored in the same, atomically
addressable memory word. Unfortunately, there is no obvious way for threads to atomically
join the group and announce their vcoreid.

One approach that would usually work well for Ticket Locks and any other locking
protocol would be to lock like normal, and add a lockholder vcoreid field. Lockers set
the field immediately after locking and before unlocking. Of course, there is a slight window
where the variable is unassigned — although rare, it must be dealt with. In these cases,
the spinning code can check every vcore to make sure it is not preempted. The performance
could be lousy and result in excessive sys change vcore() calls, but given the rarity of the
event the overhead might not be a problem.

To make busy waiting easier for user code, the Parlib library has a few helpers for making
sure other cores are not preempted. The PDR locks use ensure vc runs(int vcoreid),
which changes to the target vcore if it is preempted. If the vcoreid is the vcoreid of the
caller, it will ensure all other vcores are not preempted, from 0 to max vcores(). Eventually,
it will recover and change to the lock-holder. Keep in mind that ensure vc runs() checks
the VC PREEMPTED flag, so while the scan is O(n), it will not usually need to change to each
vcore.

Blindly calling ensure vc runs() on the entire process is not a great idea when the
lock-holder is not preempted. Even the O(n) scan takes time, and that could be time wasted
while holding a lock. Unless there is a strong suspicion that a target is preempted, the
cpu relax vc() helper is more appropriate. It will only ensure all other vcores run every
1000 calls, which is a common technique for busy waiting algorithms: spin for a bit before
taking more advanced steps.

Ultimately, any user-level code that busy waits must have a plan for dealing with pre-
emption. Most applications and schedulers will use a PDR lock from the Parlib library. The
goal of these PDR locks was to avoid deadlock with a minimum of overhead. PDR locks
do not solve the overall problem of a preempted vcore. Consider an application that simply
uses PDR locks, with ten uthreads on ten vcores, and half of those vcores get preempted. At
some point, we want to get back to normal processing and not rely on sys change vcore().
Spinlocks are a tool, and PDR locks make sure that tool does not break during preemption.
Fully recovering from preemption will require more steps.

CHAPTER 6. VIRTUAL CORE PREEMPTION 141

6.3 Handling Preemption

The Uthread library provides routines to handle the preemption of vcores. Virtually all
applications that use uthreads will use these event handlers.

Broad Plan

The broad plan for handling preemption is quite simple:

• If the preempted vcore was in uthread context, remotely copy out the uthread’s context,
hand it to the 2LS, and check the vcore’s mailbox.

• If the preempted vcore was in vcore context, we have no choice but to change to it.
Halt our current uthread, hand it to the 2LS, and change to the preempted vcore.

For the former case, when the vcore was executing a uthread, preemption is fairly simple
since the code that was running does not interact with scheduler code. Continuing the
analogy between vcore context and interrupt context in operating systems, recovering from
a preempted uthread is like an IRQ handler interrupting a syscall: relatively simple. We need
to check the vcore’s mailbox in case the preempted vcore was the destination of a spammed
message that was guaranteed to be delivered. Given that most applications perform their
work in uthread context, most preemptions will happen in this case. The common case will
involve no system calls and minimal interaction between the user and the kernel. Since the
uthread’s context and the vcore’s floating point state are in shared memory (the VCPD),
the handler can copy the context without assistance.

For the latter case, the preempted vcore could have been in the middle of a delicate
operation and must continue. As a simple example, a 2LS could have been about to run
a uthread, and if we do not run that vcore, then that uthread would be lost. Attempting
to recover a preempted vcore context is like an NMI (non-maskable interrupt) handler in-
terrupting arbitrary kernel code: be very careful. I opted to not bother with attempting to
deduce what the vcore was doing and just context switched to it (sys change vcore()).

The initial problem with simply calling sys change vcore()) is that the caller sacrifices
itself and then it is the preempted vcore. The trick to preventing a perpetual ping-ponging
is that before changing vcores, the caller prepares itself for preemption: it packages up its
uthread, hands it to the 2LS, and takes steps to make sure its messages are read. Then, the
vcore handling the preemption can change to the preempted vcore with enable my notifs

set, meaning that it does not need to run ever again.
In a sense, this approach to preemption delays the work done in response to a warning

until after a preemption occurs. Consider Psyche’s two-minute warning: presumably a
process, when informed of impending preemption, must finalize its work, prepare to be
preempted, and perhaps yield its core to the operating system. The problem with the
warnings is that the process may not respond in time, or at all. In Akaros, this preparation
is done after the preemption and on a different vcore — we get the time from the future, on

CHAPTER 6. VIRTUAL CORE PREEMPTION 142

another vcore, without delaying the preemption. That being said, it is still useful to tell the
application in advance about upcoming preemptions, but it is not necessary.

When viewed in this light, the approach to handling preemption for vcores that were
in vcore context is sufficient for handling all preemption scenarios. Simply perform the
“preparation” for the handling vcore to be preempted, then change to the preempted vcore,
regardless of its state. The former case, where a uthread is preempted, is an optimization
for the common case.

Details

The heavy lifting in preemption handling is performed by an event handler and its helper
functions.

1 stat ic void handle vc preempt (struct event msg ∗ev msg , unsigned int ev type ,
2 void ∗data)
3 {
4 u in t 32 t vco re id = vco r e i d () ;
5 struct preempt data ∗vcpd = vcpd of (vco r e id) ;
6 u in t 32 t rem vcore id = ev msg−>ev arg2 ;
7 struct preempt data ∗ rem vcpd = vcpd of (rem vcore id) ;
8 struct uthread ∗ u th r e ad t o s t e a l = 0 ;
9 struct uthread ∗∗ rem cur uth ;

10

11 i f (rem vcore id == vcore id)
12 return ;
13 while (atomic read(&rem vcpd−>f l a g s) & VC K LOCK)
14 cpu re l ax () ;
15 i f (! (atomic read(&rem vcpd−>f l a g s) & VCPREEMPTED))
16 return ;
17 i f (rem vcpd−>n o t i f d i s a b l e d) {
18 change to vcore (vcpd , rem vcore id) ;
19 return ;
20 }
21 i f (! s t a r t u t h s t e a l i n g (rem vcpd))
22 return ;
23 i f (! (atomic read(&rem vcpd−>f l a g s) & VCPREEMPTED))
24 goto ou t s t e a l i n g ;
25 i f (rem vcpd−>n o t i f d i s a b l e d)
26 goto ou t s t e a l i n g ;
27 rem cur uth = get cu r u th addr (rem vcore id) ;
28 u th r e ad t o s t e a l = ∗ rem cur uth ;
29 i f (u t h r e ad t o s t e a l) {
30 i f (u th r e ad t o s t e a l−>f l a g s & UTHREADPINNED) {
31 s t o p u t h s t e a l i n g (rem vcpd) ;
32 change to vcore (vcpd , rem vcore id) ;
33 return ;
34 } else {
35 ∗ rem cur uth = 0 ;

CHAPTER 6. VIRTUAL CORE PREEMPTION 143

36 uthread pause (rem vcpd , u th r e ad t o s t e a l , FALSE) ;
37 wmb() ;
38 }
39 }
40 ou t s t e a l i n g :
41 s t o p u t h s t e a l i n g (rem vcpd) ;
42 hand l e i nd i r s (rem vcore id) ;
43 }

There are a few complications with preemption handling that roughly fit into three
categories:

• Concurrency: the preemption handler can be run by multiple vcores, while the kernel
is still performing the preemption, or while the preempted vcore restarts.

• Difficulties with current uthread: there are some cases where a vcore cannot package
its state to change to another vcore.

• Missing messages: we must not miss messages that were guaranteed to be delivered to
the application.

Concurrent Operations

Preemption handling must wait until a preemption is complete. The kernel sets VC K LOCK

when the preemption starts and clears it after the vcore’s context is saved into the VCPD.
The handler spins until the kernel unlocks (line 14). Note the handler is busy waiting without
using cpu relax vc(); this is fine since the code waits for the kernel, not for userspace.

There could be multiple vcores handling the preemption for the same vcore concurrently.
Preemption messages are spammed to make sure some vcore handles them; multiple copies of
the message must be safe. The synchronization between vcores handling the event happens
in two places. The first is in the kernel when there are competing sys change vcore() calls
— the kernel ensures only one of them wins. The second is in fighting to set a VCPD flag
claiming the right to steal a uthread (line 22). In start uth stealing(), threads compete to
set VC UTHREAD STEALING in the preempted vcore’s VCPD. If the kernel is mucking with the
flags (VC K LOCK is set), userspace spins. If the flag is already set, it returns failure. Failure
means the handler can simply abort (line 23); another vcore is handling the preemption.

Competing vcores are not the only ones who we need to worry about: the target vcore
could start back up. As discussed above, if VC PREEMPTED is set, then the target vcore has not
come back online. A handler cannot access or modify another vcore’s current uthread while
that vcore is online. VC UTHREAD STEALING is used to prevent any accesses to the vcore’s
uthread — from other vcores or from the vcore itself. In the early stages of vcore entry(),
which is the first code run when a vcore starts, if VC UTHREAD STEALING is set, the vcore will
busy wait until it is cleared (checking its mailbox for preemption messages in the meantime).
Of course, once a vcore has passed the VC UTHREAD STEALING check, nothing will stop it from

CHAPTER 6. VIRTUAL CORE PREEMPTION 144

modifying its current uthread. The handling vcore can detect this state since the target
vcore will have its notifications disabled, which is the defining feature of vcore context.

As a side note, older versions of Akaros would restart a vcore exactly where it left off. If
it was running a uthread, then that uthread would be started directly by the kernel. The
problem with that approach is there is no way for a vcore to steal another vcore’s uthread
safely, since the preempted vcore’s uthread would start directly, without the chance to check
VC UTHREAD STEALING.

In short, the handler needs to set VC UTHREAD STEALING so long as the target vcore is
preempted and not in vcore context. It can aggressively set the flag, so long as the flag is
written before the checks are performed. Note the use of the “check (lines 16 and 18), signal
(line 22), check again (lines 24 and 26)” pattern.

There are a few other esoteric race conditions involved here. Imagine a vcore that was
preempted in uthread context. The handler gets to line 21, then the vcore starts up and
restarts its uthread. Then the handler sets VC UTHREAD STEALING at line 22. The check at
line 26 will fail, since the target vcore is no longer in vcore context. The check at line 24
would notice, and prevent the handler from stealing a running uthread, whose context is
invariable different than what is in VCPD. The check at line 26 is necessary if a vcore was
preempted once in uthread context so that the handler could get past line 18, then the vcore
starts up and gets preempted again, this time in vcore context.

Difficulties with current uthread

Concurrent operations from other vcores can be solved with shared memory synchronization.
Another class of problems arises from situations where we cannot package up the uthread,
either on the preempted vcore or the handling vcore. The two sources of these problems are
VC UTHREAD STEALING and UTHREAD PINNED.

Recall from Section 4.4 that uthread’s have a flag, UTHREAD PINNED, that means the
uthread is not allowed to leave its current vcore. This flag is not set lightly; it is only used
when a uthread requires that it stays on a vcore, usually as part of the process of disabling
notifications. Without the flag, a uthread cannot be sure of its vcoreid, and thus unable
to disable its vcore’s notifications. During the brief moment after the uthread is pinned,
but before notifications are disabled, we treat the vcore as if it was in vcore context since
it will be in vcore context very soon. This special treatment for pinned uthreads applies
when starting uthreads, as well as during preemption. When starting pinned uthreads, the
Uthread scheduler code temporarily violates the rule that we never leave vcore context when
there is a notif pending. It will pop to uthread context, ignoring notif pending, because
any code that clears UTHREAD PINNED must check notif pending and reenter vcore context
if it was set. In essence, pinning a uthread acts like a wrapper around vcore context.

For the purposes of handling preemption, if a vcore has a pinned uthread, then it is stuck
in vcore context and cannot package up its state to yield completely. This statement is true
for both the preempted vcore and for the vcore handling the preemption. If a preempted
vcore had a pinned uthread, we must change to it (line 33). If the handling vcore has a

CHAPTER 6. VIRTUAL CORE PREEMPTION 145

pinned uthread, then it needs to be careful if it must change to the preempted vcore. To
explain further, we need to look at the helper change to vcore().

44 stat ic void change to vcore (struct preempt data ∗vcpd , u i n t 32 t rem vcore id)
45 {
46 bool were hand l ing remotes ;
47 i f (atomic read(&vcpd−>f l a g s) & VC UTHREAD STEALING) {
48 change vco r e (rem vcore id , FALSE) ; /∗ re turns on succe s s ∗/
49 return ;
50 }
51 cmb() ;
52 i f (! cu r r ent uthread) {
53 were handl ing remotes = ev might not r e turn () ;
54 change vco r e (rem vcore id , TRUE) ; /∗ noreturn on succe s s ∗/
55 goto out we returned ;
56 }
57 i f (current uthread−>f l a g s & UTHREADPINNED) {
58 change vco r e (rem vcore id , FALSE) ; /∗ re turns on succe s s ∗/
59 return ;
60 }
61 a s s e r t (cur r ent uthread) ;
62 uthread pause (vcpd , current uthread , TRUE) ;
63 cur r ent uthread = 0 ;
64 were handl ing remotes = ev might not r e turn () ;
65 change vco r e (rem vcore id , TRUE) ; /∗ noreturn on succe s s ∗/
66 out we returned :
67 ev we returned (were hand l ing remotes) ;
68 }

Whenever a handler determines that it must change to another vcore (lines 19 and 33 in
handle vc preempt()), it calls change to vcore(). Ideally, the handler would completely
clean up its state (lines 63-65) and perform a “one-way” context switch (line 66). A one-way
context switch calls sys change vcore() with an argument of TRUE and will never return.
If the handling vcore has a pinned uthread, then it must return from its change to vcore()

(line 59). Likewise, if the handling vcore’s current uthread is being stolen, then it cannot
clean up its state since it cannot touch its current uthread.

The overall plan to handle preemption relies on the handling vcore cleaning up its state,
and then changing to the preempted vcore. The two cases preventing the clean-up are
VC UTHREAD STEALING and UTHREAD PINNED. One concern is that through a pathological
series of events, multiple vcores could be stuck and unable to make progress due to a stealing
in progress or a pinned uthread. Perhaps two vcores, both with pinned uthreads, change
back and forth to each other. The preemption handler and the scheduler entry function work
together so that these livelocks will not occur. When analyzing these scenarios, note that all
vcores will be in vcore context. It is possible that a handler may think another vcore was in
uthread context, but in any such deadlock, all vcores will eventually agree that all of them
are in vcore context.

First, a vcore will never set another vcore’s VC UTHREAD STEALING and then itself call

CHAPTER 6. VIRTUAL CORE PREEMPTION 146

change to vcore(). So for multiple vcores to be stuck in a cycle of stealing each other’s
uthreads, the kernel would need to preempt a vcore that was in the middle of a handler.
There is nothing wrong with this scenario. If a vcore was preempted in the middle of its
handler and had set another vcore’s VC UTHREAD STEALING, the next time it ran it would see
the other vcore was in vcore context and clear VC UTHREAD STEALING, averting this deadlock.

Second, the only time a vcore handles an event while its own uthread is pinned is when
another vcore was briefly stealing its uthread. The vcore does this because it is spinning,
waiting on another vcore to stop stealing its uthread. In this case, the stealer will soon unset
VC UTHREAD STEALING, either because it noticed we were in vcore context or because it stole
the uthread. In any event, the next time the vcore ran with a pinned uthread, it would not
check events right away. It would wait until the uthread became unpinned, at which point it
would handle any outstanding preemption events — this time in a state where it can cleanly
perform a one-way change to another vcore.

In general, vcore context code only handles events in clearly marked places. Vcore context
is decoupled from event handling, unlike with both Scheduler Activations and Psyche. In
Scheduler Activations, an activation was a vehicle for an event. In Psyche, software interrupts
were executed just like hardware interrupts, with interrupt vectors and handlers. In Akaros,
events are just one of many things doable in vcore context. By choosing when to handle
events, we can avoid handling events at inopportune moments. Additionally, event handlers
do not need to return — those one-way context switches to other vcores never return, and
the vcore starts up with a fresh context the next time it runs. The flexibility of this model
is one of the benefits of Akaros’s vcore context over Scheduler Activations and Psyche.

The details behind VC UTHREAD STEALING and UTHREAD PINNED can be a bit overwhelm-
ing. In fact, every issue caused by VC UTHREAD STEALING can be removed if I change the
preemption handling system to not attempt to copy uthreads remotely. I built the remote
recovery to see if and how it could be done, since it seemed possible with shared memory.
Perhaps profiling data from real-world use cases will show a negligible improvements from
remote recovery, and that the complexity in the code is not worth the hassle. The main
point is that there are some occasions where we cannot blindly change to another vcore, but
the system is designed to handle them.

Never Miss a Message

The final complications stem from guaranteed event delivery. If a vcore is online or has
its VC CAN RCV MSG set, it is a valid destination for a spammed message, as discussed in
Section 5.3. Part of the preemption handler’s job is to turn off this flag in a preempted
vcore, then check the public mailbox for messages. That process is fairly straightforward
— the only complication involves using compare-and-swap to change the flag only if the
preempted vcore is still preempted. The major difficulty associated with missing messages
involves the handler’s vcore, due to the scenarios where the handling vcore does a one-way
context switch, never returning from the event handler.

There are three situations the preemption handler must consider:

CHAPTER 6. VIRTUAL CORE PREEMPTION 147

• There are still messages in the handling vcore’s public mailbox. Dealing with this
is simple: when a sys change vcore() succeeds, the kernel sends an EV CHECK MSGS

event. The uthread library set up an event queue with the EVENT SPAM PUBLIC and
EVENT VCORE MUST RUN flags set, so the kernel will ensure an online vcore will get
the message. The vcore receiving the message will usually be the one we are chang-
ing to, which is guaranteed to be online. The handler for EV CHECK MSGS will call
handle vcpd mbox(), which deals with the details of handling message from another
vcore’s public mailbox.

• The preemption event came from an EVENT INDIR event queue that is throttled. This
means that only one indir message was sent to userspace to look at the event queue,
though there may be many events remaining in the queue. If the handler does not
return, then the process will not check that event queue until the next message, which
may never come. The rule for event queues is that if a handler might not return, such
as the preemption handler, then any event queues with EVENT INDIR must also have
EVENT NO THROTTLE. Actually, the preemption event queue is not an indir — it uses
spammed public messages, but this rule still applies to all other event queues.

• The handling vcore was in the process of handling a remote vcore’s public mailbox.
Similarly to throttled indir event queues, there may be only a single message sent to
the process to handle another vcore’s mailbox. If a handler does not return, then any
other messages in that mailbox could be missed. The solution is for the handler to
send a EV CHECK MSGS to its own public mailbox.

Specifically, any event handler that might not return calls ev might not return(),
which works together with handle vcpd mbox() to send an EV CHECK MSGS only if the
caller is processing a remote vcore’s mailbox. Likewise, any time a vcore encounters
a EV CHECK MSGS while processing another vcore’s mbox, it sends that message to its
own public mailbox. In essence, a vcore uses its public mailbox as a “to-do” list to get
us out of trouble.

Final Thoughts on Preemption

Handling preemption is complicated, but the Uthread library manages its complexities. Sev-
eral of those complications arise from the handler stealing uthreads, which may or may not
be truly necessary.

From the perspective of second-level scheduler writers, the main impacts of preemption
are:

• A call to handle events() might not return. Plan accordingly.

• The 2LS upcall thread paused() will usually be called when there is a preemption.
This is the 2LS’s opportunity to reevaluate scheduling or do whatever it wants. Note

CHAPTER 6. VIRTUAL CORE PREEMPTION 148

that the calling core might be about to change to another vcore, so thread paused()

must return and the 2LS must not assume the current vcore will continue to run.

Likewise, 2LS or application developers can override the uthread preemption handler
if they choose, but only after reading this chapter. More likely, applications will use the
existing handlers, and use the thread paused() method to simply add uthreads to runnable
lists. If future 2LSs have particular needs that are not suited by the existing upcalls, then I
can easily extend the interface.

The main takeaway from preemption handling is that it can be done safely, without dead-
locking, from any situation. The key insight is to prepare for preemption from the handler,
after the original vcore was preempted, and then change to the preempted vcore. This tech-
nique, as well as many others used in preemption handling, was enabled by separating event
handling from vcore context. In this manner, the kernel can preempt a core immediately
from a process so that it can reallocate the physical core to a higher priority process.

149

Chapter 7

Applications

In the previous chapters, I described the mechanisms underlying the MCP, event delivery,
and preemption handling. In this chapter, I will show how applications can utilize Akaros’s
mechanisms, including adapting to preemption and customizing their second-level schedulers.
Finally, I will show the kernel preempting cores from a low-priority application to allocate
them to a high-priority application with provisioned resources.

7.1 Fluidanimate

Given the FTQ results from Section 4.5, a user-level, compute-bound task will run better on
Akaros than Linux. Arguably, FTQ is such a hyper-sensitive compute-bound task. This is
not a mystery: the Akaros kernel does not interfere with a user’s core, and the Linux kernel
does. Of course, Akaros’s processor isolation is not a free lunch: the cost is at least one core
dedicated to handling interrupts, system management, and single-core processes. The result
of this tradeoff is that a system with n cores can only dedicate n− 1 to an MCP.

Instead of testing a basic matrix multiplication kernel, I looked for an HPC application
with more interesting characteristics to better explore the pros and cons of the Akaros model.
Fluidanimate, a particle simulator from the PARSEC benchmarking suite[10], is one such
application. Fluidanimate is a user-level, compute-bound task with a requirement of having
a power-of-two number of workers. That requirement is due to how fluidanimate decomposes
its problem; a power-of-two is very convenient for the application. The application computes
in phases, with periodic barriers across all workers. Ideally, fluidanimate would run on a
power-of-two number of physical cores, with each worker thread pinned to a particular core.

Of course, on Akaros, we cannot allocate all of the cores of a machine, so fluidanimate’s
performance on a machine with 32 cores should suffer. Likewise, on any operating system,
we may not have a power-of-two number of cores available. The machine might not have
a power-of-two number of cores at all. Additionally, there may be multiple applications on
a machine, and fluidanimate might be allocated less cores than it desires. One simple tool
to deal with the imbalance between the number of cores and the number of workers is the

CHAPTER 7. APPLICATIONS 150

thread. With fast, user-level threading, an application can have as many worker threads as
it likes, independent of the underlying parallelism available.

Table 7.1: Fluidanimate Runtime (seconds)

32 Thr 64 Thr 128 Thr 256 Thr 512 Thr

Linux 32 Cores 66.95 89.91 133.66 170.18 221.00
Linux 31 Cores 75.80 93.56 143.52 179.28 226.77
Linux 24 Cores 89.07 107.70 153.18 181.91 234.16
Akaros 31 Cores 70.24 68.55 68.59 68.64 71.73
Akaros 24 Cores 95.95 82.14 84.17 84.68 88.98

Table 7.1 shows the runtime of fluidanimate on c89 for 1000 frames of the in 500K.fluid

data set, varying the number of cores and pthreads. Increasing the thread count does not
help fluidanimate’s performance on Linux, regardless of the number of cores. In fact, the
oversubscribed threads greatly interfere with each other; increasing the thread count by a
factor of four decreases performance by a factor of two. For Akaros, 64 threads performs the
best, and additional threads do not significantly hurt performance.

Overall, Akaros’s best case (64 threads on 31 cores) is worse than Linux’s best case (32
threads on 32 cores). However, the gap is quite narrow — only about 2%. Older, 32-bit
versions of fluidanimate performed slightly better on Akaros by around the same margin,
even with only 31 cores.

Fluidanimate on Akaros uses the default pthread scheduler, which is first-come, first-
served (FCFS). Since there are more threads than cores on Akaros, each phase of fluidani-
mate’s computation goes as follows. 31 threads run until they individually reach the next
barrier — typically some threads finish faster than others due to how the particle simulation
works. When a thread finishes, a remaining thread runs. On an unlucky phase, the entire
application could be held up by one or two long-running threads that happened to run late
in the phase. A smarter second-level scheduler, closely coupled to the application and that
knows about a thread’s progress, could quickly time-slice these threads so that they finish
around the same time. Hofmeyr et al. pursued this idea with their Juggle scheduler[42],
which proactively load balances threads in HPC applications. With close coordination be-
tween the scheduler and the application, as well as fast user-level context switches, a Juggle
scheduler on Akaros should perform quite well.

As shown in Table 7.1, fluidanimate performs better on Akaros than Linux with 31 and
24 cores. In short, performance on Linux declines if the number of cores is not ideal, due to
either kernel scheduling or interference. Due to Akaros’s inexpensive user-level threads and
synchronization, fluidanimate was able to spawn significantly more threads than cores and
be more resilient to preemption.

To see this effect more clearly, I measured fluidanimate’s throughput over time as cores
were preempted. First, to set the baseline performance, Figure 7.1 shows fluidanimate’s

CHAPTER 7. APPLICATIONS 151

framerate over time with no interference on c89. Clearly, the throughput varies over time —
this is simply an artifact of the application.

0 50 100 150 200 250 300 350

0
5

10
15

Time (seconds)

F
ra

m
es

 p
er

 s
ec

on
d

Fluidanimate Throughput

Figure 7.1: Fluidanimate, Akaros, 64 Threads, 31 Cores

On both Linux and Akaros, I ran fluidanimate for 5000 frames, which takes about 5 min-
utes under normal circumstances. Every ten seconds, I preempted a core. To preempt cores
on Linux, I used taskset. To preempt cores on Akaros, I provisioned them to an idle process
that simply halts the core. After ten seconds with one core, I gave all the of available cores to
the application (32 on Linux, 31 on Akaros). Figure 7.2 shows the application’s performance
with preemption on Akaros and Linux. Figure 7.3 shows Akaros’s performance relative to
Linux. When the application has fewer cores than threads, fluidanimate’s performance on
Akaros is higher — enough so that the application finishes earlier. Greater resilience to
changing amounts of resources is one of the features enabled by fast user-level threading.
Also note that fluidanimate did not deadlock on Akaros; the default preemption handlers
did their job.

In this test, the cause of preemption was synthetic: either an idle process or taskset di-
rectives to the kernel. In the next section, fluidanimate will run as a background application,
where the machine is provisioned to a high-priority webserver.

7.2 Webserver

The MCP was designed with the desire to allow high-performance applications to manage
their resources. The purpose of user-level scheduling is to allow an application to cus-

CHAPTER 7. APPLICATIONS 152

0 100 200 300 400 500

0
5

10
15

Fluidanimate Throughput With Preemption

Time (seconds)

F
ra

m
es

 p
er

 s
ec

on
d

Akaros
Linux

Figure 7.2: Fluidanimate Performance on Akaros and Linux with Preemption

0 100 200 300 400

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Relative Fluidanimate Throughput With Preemption

Time (seconds)

R
el

at
iv

e
T

hr
ou

gh
pu

t

Akaros
Linux

Figure 7.3: Fluidanimate Relative Performance on Akaros and Linux with Preemption

tomize its scheduler to maximize performance given its set of allocated resources. Likewise,
Akaros’s distinction between resource provisioning and allocation is driven by a desire to

CHAPTER 7. APPLICATIONS 153

utilize idle resources while still satisfying a high-priority application’s needs, as I discussed
in Section 3.2. The distinction between provisioning and allocation only matters for
applications with changing resource demands — otherwise the allocated amount is the pro-
visioned amount. An application with a smart scheduler can manage its threads and adjust
the amount of resources used based on its workload. In this section, I will discuss one such
application, a webserver, and how it interacts with Akaros.

Kevin Klues wrote a basic, threaded webserver in C called kweb. It only serves static
files and is easily modifiable. We ported kweb to use Akaros’s pthread library.

One interesting feature of kweb is its handling of bursts of requests. HTTP persistent
sessions batch several requests across a single connection to amortize the cost of establishing
a TCP connection. These requests are referred to as a burst. Some webservers pursue a
“thread per connection” strategy. By contrast, kweb’s strategy is a “thread per request.”
By default, kweb threads dequeue connections from a global connection queue. The threads
extract a request, then requeue the connection in the global queue, and finally processes the
request. All threads writing responses via the same connection serialize on a per-connection
mutex. Kweb’s intra-burst concurrency enables certain scheduling policies and allows the
system to stay busy if there are not enough connections, at the expense of complexity.

To measure kweb’s performance, I used httperf[76] with slight modifications by Kevin
and I to handle a large number of open file descriptors and to track various events. Httperf
is capable of numerous types of tests with a wide array of options. Due to the relatively
immature networking stack of Akaros, I used a throughput test with a limited number of
connections. Httperf launches 100 connections, each of which sends bursts of 100 requests for
a total of 100,000 requests per connection. The total number of requests is not particularly
important — it is mostly a knob to control how long the test runs.

The benefit of this type of test compared to one where httperf creates numerous con-
nections is that performance degrades gracefully under load. The Akaros networking stack
has scalability problems with a large number of connections, which is beyond the scope of
my dissertation. If kweb falls behind with a typical “connections per second” benchmark on
Akaros, networking performance drops drastically. With a static set of connections, queue-
ing within the network stack and the application layer provides back-pressure such that the
system handles as many requests as it can without being overloaded. For this reason, I
often refer to this test as a throughput plateau test, since it represents the plateau of an ideal
throughput curve.

For a frame of reference, kweb on Linux with 50 threads handles around 165,600 queries
per second (QPS) on c89 for the throughput plateau test. Kweb on both Linux and Akaros
performed best on this benchmark with fifty threads. Likewise, throughput for both varied
about the average. Table 7.2 shows the throughput for kweb on Linux and Akaros for a
variety of settings, explained below.

Kweb on Linux did not noticeably benefit from any scheduling policies, such as restricting
the application to a single socket or to only using one hyperthread in a pair of sibling cores.
However, kweb on Akaros definitely benefits from restricting the webserver to the first socket
and from using only one core out of each pair of hyperthreaded siblings.

CHAPTER 7. APPLICATIONS 154

Table 7.2: Kweb Throughput, 100 connections of 100,000 calls each

Avg. Min. Max. Std.
Linux 165558 159103 167703 2395
Akaros, Pthreads, 6 VCs, Hyperthreads 134676 133121 135567 635
Akaros, Pthreads, 6 VCs, No-Hype 162885 160488 166035 1661
Akaros, Custom 2LS, 6 Worker Cores 170315 168094 172045 766

The reason for the former is that Akaros’s current networking stack uses physical core 0 to
execute most of the networking stack, including the reception of all interrupts. By contrast,
Linux routes interrupts to several cores. Ideally, Akaros would allow the application to
request that certain IRQs from the network card are routed to its cores — that is a subject
of future work. For now, the best performance on Akaros results from keeping the application
on the same socket where the network stack executes, to share the last-level cache.

Kweb on Akaros also benefits from running on only one core in each pair of hyperthreaded
siblings. The reason for this may be that the pthread scheduler, as well as all custom
schedulers for kweb, poll for work in vcore context. If an application chooses to be nice
and yield its unused resources, then that is the decision of the scheduler. For the highest
and most predictable performance, typically I instruct the pthread scheduler to not yield its
vcores for lack of a smarter policy. The difference in performance can be seen in Table 7.2.
Akaros with pthreads and using hyperthreaded cores handled only 134676 QPS, compared
to 162885 QPS when the kernel scheduler handed out non-hyperthreaded cores.

Additionally, the webserver performed best on Akaros with only six worker vcores, re-
gardless of the second-level scheduler. At first, I thought this was due to the contention in
user-space for the global run queue in the pthread scheduler. However, kweb’s performance
is actually heavily limited by the kernel’s performance. Despite Akaros’s relatively poor
networking stack, there are still steps the 2LS can take to optimize its performance, as I
discuss below.

Customizing the User-level Scheduler

As I often say, the problem with user-level scheduling is that someone needs to write a user-
level scheduler. I wrote a primitive scheduler for kweb, called wthreads, and incorporated
several optimizations, some of which improved performance while others harmed perfor-
mance. Overall, with a customized 2LS, kweb on Akaros beat even kweb’s performance on
Linux, as shown in Table 7.2.

On Akaros, the biggest performance improvement comes from using specific physical
cores, notably disabling hyperthreading and limiting the application to a single socket. For
the pthreads version of kweb, I hacked the kernel scheduler to only hand out even-numbered
cores so that all odd-numbered cores are halted — effectively disabling hyperthreading. This
approach is not particularly manageable, so one of the customizations to the 2LS is to have
the webserver turn off all of its odd-numbered cores. Putting the control of hyperthreading

CHAPTER 7. APPLICATIONS 155

into the hands of the application has two benefits: the application can choose whether or
not to do so, and the application is actually allocated the (halted) sibling cores. The latter
benefit is that the application is billed for the use of those cores. It just so happens to
want the cores to remain halted. Not all applications will want hyperthreading disabled —
fluidanimate did not benefit from disabling hyperthreading.

The current Akaros kernel interface for requesting and allocating cores does not make
a distinction between particular cores or between sibling pairs. The applications request
is only for a quantity of cores. To allocate specific cores, such as a single socket, the user
must provision those specific cores. The kernel will allocate provisioned cores before any
others. In the future, the kernel will need to accept requests for specific cores, possibly
a bitmap of desired cores. Whether or not the kernel interface should explicitly support
sibling pairs is unclear. To minimize CPU interference, an MCP would need both siblings in
a hyperthreaded pair. However, perhaps allocating siblings could be done with an explicit
request for each core, instead of building a sibling pair abstraction.

Regardless, the application’s scheduler will be involved in managing hyperthreading,
regardless of the details of the kernel interface. The application can determine which physical
cores it runs on by looking at the vcoremap in procinfo, a memory region shared with the
kernel.

The webserver also runs best when limited to a single socket. Not only are interrupts
routed strictly to physical core 0, but the networking stack does not scale well to large
numbers of cores. When the webserver utilizes cores on the second socket, the kernel’s locks
and memory references force cross-socket cache misses, which are expensive.

Similarly, kweb’s performance depends on the number of physical cores, as well as the
location. Figure 7.4 shows the throughput of kweb as we increase the number of workers. For
each worker vcore, kweb actually has a pair of siblings with the odd-numbered vcore halted.
The application also has allocated and halted physical core 1, so as to limit interference to
core 0. When the application has eight workers, it actually has physical cores 1-17, and
cores 16 and 17 are on the second socket. Clearly the performance is worse in this situation.
However, regardless of issues with multiple sockets, more cores is not necessarily better.
Kweb performed better with six workers than seven, even though seven workers is still all
in the first socket. The large variation of kweb’s performance with seven workers is a sign
of poor scalability.

I pursued several other improvements to the webserver’s scheduler. One beneficial change
was how the 2LS deals with blocking syscalls. Since the vcores busy wait in their idle loops,
there is no reason to receive IPIs from the kernel when syscalls complete. Changing this was
as simple as changing a few flags in the event queue that the 2LS uses when an asynchronous
syscall is not complete.

Overall, I had high ambitions for a customized 2LS. The default pthread scheduler used a
global runqueue and made no concessions to the nature of the webserver. I built a scheduler
with per-vcore run queues, with the policy that all threads working on a given connection stay
on the same vcore. Each vcore is responsible for many connection, and each connection has
exactly one vcore. The intent of this policy is to scale to large numbers of cores by partitioning

CHAPTER 7. APPLICATIONS 156

●●●

●●

●●

●●●●●

●

●

●●

●●●●●●

1 2 3 4 5 6 7 8 9 10

60
00

0
80

00
0

10
00

00
12

00
00

14
00

00
16

00
00

18
00

00

Kweb Throughput

Worker Vcores

K
w

eb
 (

re
qu

es
ts

/s
ec

)

Figure 7.4: Akaros Kweb, Custom-2LS, Throughput vs. Workers

the connections. The latest trend in scalable networking stacks is partitioning connections
across cores, from the queues within the NIC all the way up to the application. Megapipe[33]
developed partitioned listen sockets, which allow an application to listen for connections for
a particular queue/core combination, and FreeBSD is pursuing similar developments[16].
Although Akaros’s network stack does not have these modifications, partitioning connections
among cores should result in some benefits from locality and lack of contention on per-
connection structures and locks.

Since the Akaros kernel cannot dispatch new connections directly to vcores, I dedicated a
single vcore to handling the accept() call, and had that vcore dispatch new file descriptors
(FDs) to the worker vcores. I used BCQs (Section 5.1) to dispatch new FDs, so that the
accept loop can detect back-pressure and hangup connections if the system is overloaded.

For their part, the worker vcores would prioritize existing threads working on older re-
quests. When there were no runnable threads, it would create threads on demand to handle
any new requests or connections. Old threads were recycled in per-vcore, zombie-thread
queues. Whenever a thread blocks on a syscall, if there are more requests, another thread
will quickly process the next request and issue another syscall. Optionally, the 2LS can limit
the number of outstanding syscalls, and choose to idle or busy-wait.

Although all of these changes sound reasonable, the overall performance of the system
is only around 140,000 QPS — far less than with a naive global scheduler. It appears that
the 2LS was doing its job quite well; the application would have syscalls submitted to the
kernel for every connection. The problem was that the kernel itself cannot handle a heavy

CHAPTER 7. APPLICATIONS 157

workload. In fact, the system performed best with a naive scheduler since it happened to
not issue too many concurrent requests to the kernel. In this case, it is unfortunate that the
Akaros kernel cannot handle the workload, but at least the application was able to adjust
its behavior to suit its situation. Optimizing for a lousy kernel is better than not being able
to optimize at all, and when the kernel’s network stack gets upgraded, the application can
be retuned to take advantage of any improvements. It is possible that the kernel is not to
blame for the poor performance; Akaros needs better profiling tools to determine the root
cause of these issues. As it stands now, the results from Table 7.2 are for a custom scheduler
that disables hyperthreading on its cores, uses a global runqueue, and limits the amount of
outstanding syscalls per vcore. Although it is not ideal, it is clearly an improvement over
the default pthread scheduler and even kweb on Linux.

Running with Background Tasks

The webserver is an example of a high-priority task. The provisioning and allocation ker-
nel scheduling policies were built to allow the webserver to adjust its vcores based on its
workload. The kernel scheduler can backfill unused resources to low-priority applications.
When demand increases, those resources are preempted from the low-priority application
and allocated to the high-priority application.

To test these mechanisms, I ran kweb with the throughput httperf test and fluidanimate
as a background application. In lieu of a smart scheduler that could determine its workload
based on a connection rate or other metrics, I manually told kweb to increase or decrease
its amount of vcores to simulate those decisions. The actual policy to make those decisions
is beyond the scope of my dissertation.

Figure 7.5 shows the performance of kweb and fluidanimate where kweb adjusts its desired
number of cores over time. Kweb uses the customized 2LS, where it allocates both cores in
a sibling pair and halts the odd-numbered physical core. Neither fluidanimate nor any other
application can use those cores while they are allocated to kweb. The test was structured as
follows: kweb ran alone for 30 seconds with one worker and three vcores (physical cores one
and three were halted). After 30 seconds, fluidanimate started and requested all remaining
cores Every 30 seconds kweb requested two sibling cores. Those cores were preempted from
fluidanimate and reallocated to kweb. At 240 seconds, to simulate a drop in workload,
a script instructed kweb to yield three sibling pairs, which the kernel then allocated to
fluidanimate.

As expected, kweb’s performance increases and fluidanimate’s decreases as cores are
preempted from fluidanimate and given to kweb. Two other features of Figure 7.5 are worth
mentioning. First, when fluidanimate starts up at 30 seconds, we see a slight drop in kweb’s
throughput. Even though kweb has exclusive access to its cores, fluidanimate shares a last-
level cache on the same socket as kweb. Fluidanimate’s memory accesses degrade kweb’s
performance. The Akaros kernel does not treat cache space or memory bandwidth as an
isolatable resource yet. Second, at 210 seconds, kweb starts up another worker, but its

CHAPTER 7. APPLICATIONS 158

0
50

00
0

10
00

00
15

00
00

20
00

00

Application Throughput with Preemption

Time (seconds)

K
w

eb
 (

re
qu

es
ts

 /
se

c)

0 30 60 90 150 210 270 330 390

0
5

10
15

F
lu

id
an

im
at

e
(f

ra
m

es
 /

se
c)

Kweb
Fluidanimate

Figure 7.5: Kweb and Fluidanimate Throughput with Preemption

performance degrades. As I mentioned above, the webserver and network stack do not scale
well. Regardless, the preemption and allocation mechanisms work as planned.

Future Work

Akaros’s provisioning scheduler and preemption handlers do their job, but for real-world
applications to take advantage of them, we need smarter user-level schedulers. One major
part is to build logic that actually adapts to load. The depth of the connection queue is
likely a good, basic metric for load. One minor issue with using the connection queue is
that it requires fresh connections, which the “throughput plateau” test does not test. The
Akaros network stack needs to be tuned and upgraded before scaling out to a large number
of connections, at which point a smart 2LS that adjusts its resources based on the connection
rate would be feasible. Likewise, the kernel’s bottlenecks while handling numerous concurrent
syscalls need to be profiled and improved. It is understandable that it is possible for the
application to overload the kernel, but any degradation should be graceful.

On another note, there are many other opportunities presented by having a user-level
scheduler. All of the queries used in the throughput test were for a static file that was
loaded in the page cache. The only blocking calls were on socket operations. A more full-
fledged webapp with serious processing and multiple syscalls that can block would lead to
a wider variety of scheduling decisions. For instance, a 2LS could prioritize threads in an
Earliest-Deadline-First (EDF) policy, possibly even preempting other newer threads to run

CHAPTER 7. APPLICATIONS 159

older threads. Another option would be to prioritize threads based on the type of operation,
say POST calls and other transactions over GETs and simple reads.

The kernel interface for requesting cores may need an improvement. Perhaps sibling cores
need to be an abstraction, or at least the application can request particular physical cores.
On a similar note, the uthread library’s preemption handlers may need more hooks for 2LS
writers. The preemption handlers work for basic user-level schedulers, but more intricate
schedulers may have specialized concerns that I had not anticipated. As of now, no one is
writing second level schedulers for Akaros applications, and once we have more developers,
various interfaces will need to be tweaked. Changing parts of Akaros was always the plan of
record; the kernel and user libraries are easily modifiable.

160

Chapter 8

Conclusion

In this work, I presented the “Many-Core Process” (MCP), a new process abstraction de-
signed to support high-performance, parallel applications. The MCP is the primary compo-
nent of Akaros, a research operating system designed for single-node, large-scale SMP and
many-core architectures. The MCP embodies transparency, application control of physical
resources, and performance isolation.

The big idea behind the MCP is the separation of the notion of cores from threads. The
kernel grants spatially partitioned cores to processes, and userspace is responsible for the
management of those cores. There are several benefits to this approach.

• The process retains control of its cores regardless of page faults or blocking system
calls.

• With user-level scheduling, the application can prioritize whichever threads it desires
and can pursue novel scheduling policies.

• Closely related to user-level scheduling, user-level threading provides a two-sided per-
formance boost: faster context switches and lightweight thread structures.

• From the kernel’s perspective, it can create lightweight threads or possibly skip threads
completely to implement a user’s system calls. Threads are not part of the contract
between the user and the kernel.

In data centers and other multi-tenant systems, a single MCP will not exist in a vacuum.
The Akaros scheduler allows userspace to provision a set of resources to an application,
guaranteeing future, uninterrupted access to physical resources. When the MCP asks for
the resource, the kernel will perform the allocation. Provisioning is directed by userspace;
this is the coarse-grained resource allocation decision-making that userspace needs to be able
to make. The fine-grained scheduling decisions are made by user-level schedulers within an
MCP. Both coarse and fine-grained control over scheduling is important for applications.

I have described the MCP from the kernel and user’s perspective, covering the details of
virtual cores, second-level schedulers, and the process life cycle. The cores granted to MCPs

CHAPTER 8. CONCLUSION 161

are under the complete control of the application; the FTQ benchmark showed an order of
magnitude less CPU interference for MCPs compared to Linux.

Granting cores to processes is relatively easy; however a more complete system must deal
with blocking system calls, preempted vcores, and even the desire to yield vcores. To handle
these scenarios, the kernel and user work together to guarantee event delivery and handle
preempted vcores. Of special note, I have developed a class of locking algorithms that make
use of the kernel’s transparent interface to detect and recover from preemption: the PDR
locks.

Smart applications can take advantage of the transparency and control afforded them by
the kernel. Akaros’s default pthread scheduler provides the basics of user-level threading,
but applications can do more with customized user-level schedulers. Kweb’s performance on
Akaros varied substantially based on choices made by its user-level scheduler, and the best
slightly outperformed Kweb on Linux, despite Akaros’s immature networking stack.

Although user-level scheduling on Akaros has shown promise, much more can be done
in the future. We need scheduler developers to push the limits of the MCP and help guide
the evolution of its APIs, so that applications can maximize their potential and achieve
predictable, high performance.

162

Bibliography

[1] Mike Accetta et al. “Mach: A New Kernel Foundation for UNIX Development”. In:
1986, pp. 93–112.

[2] T. E. Anderson et al. “Scheduler Activations: Effective Kernel Support for the User-
Level Management of Parallelism”. In: Proc. of the ACM Symp. on Operating Systems
Principles (SOSP). 1991.

[3] Thomas E. Anderson et al. “A Case for NOW (Networks of Workstations)”. In: IEEE
Micro 15.1 (Feb. 1995), pp. 54–64. issn: 0272-1732. doi: 10.1109/40.342018. url:
http://dx.doi.org/10.1109/40.342018.

[4] Krste Asanović et al. “A View of the Parallel Computing Landscape”. In: Communi-
cations of the ACM 52.10 (Oct. 2009). doi: 10.1145/1562764.1562783.

[5] Krste Asanovic et al. The Landscape of Parallel Computing Research: A View from
Berkeley. Tech. rep. UCB/EECS-2006-183. EECS Department, University of Califor-
nia, Berkeley, Dec. 2006. url: http://www.eecs.berkeley.edu/Pubs/TechRpts/
2006/EECS-2006-183.html.

[6] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. “Resource containers: A new
facility for resource management in server systems”. In: Proc. of the ACM Symp. on
Operating Systems Design and Implementation (OSDI). 1999.

[7] Paul Barham et al. “Xen and the art of virtualization”. In: Proc. of the ACM Symp.
on Operating Systems Principles (SOSP). 2003. isbn: 1-58113-757-5. doi: http://
doi.acm.org/10.1145/945445.945462.

[8] Alan Bawden. PCLSRing: Keeping Process State Modular. http://www.inwap.com/
pdp10/pclsr.txt. 1989.

[9] Rob von Behren et al. “Capriccio: Scalable threads for internet services”. In: SOSP
’03. Bolton Landing, NY, USA, 2003. isbn: 1-58113-757-5. doi: http://doi.acm.
org/10.1145/945445.945471.

[10] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD thesis. Princeton
University, Jan. 2011.

[11] David L. Black. “Scheduling Support for Concurrency and Parallelism in the Mach
Operating System”. In: Computer 23.5 (May 1990), pp. 35–43. issn: 0018-9162. doi:
10.1109/2.53353. url: http://dx.doi.org/10.1109/2.53353.

http://dx.doi.org/10.1109/40.342018
http://dx.doi.org/10.1109/40.342018
http://dx.doi.org/10.1145/1562764.1562783
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://dx.doi.org/http://doi.acm.org/10.1145/945445.945462
http://dx.doi.org/http://doi.acm.org/10.1145/945445.945462
http://www.inwap.com/pdp10/pclsr.txt
http://www.inwap.com/pdp10/pclsr.txt
http://dx.doi.org/http://doi.acm.org/10.1145/945445.945471
http://dx.doi.org/http://doi.acm.org/10.1145/945445.945471
http://dx.doi.org/10.1109/2.53353
http://dx.doi.org/10.1109/2.53353

BIBLIOGRAPHY 163

[12] Tim Brecht et al. “Evaluating Network Processing Efficiency with Processor Par-
titioning and Asynchronous I/O”. In: SIGOPS Oper. Syst. Rev. 40.4 (Apr. 2006),
pp. 265–278. issn: 0163-5980. doi: 10.1145/1218063.1217961. url: http://doi.
acm.org/10.1145/1218063.1217961.

[13] Eric Brewer. “Parallelism in the Cloud”. In: Workshop on Hot Topics in Parallelism.
Keynote Talk. 2013.

[14] Neil Brown. Linux Kernel Design Patterns, Part 1. http://lwn.net/Articles/
336224/. June 2009.

[15] Ben J. Catanzaro. Multiprocessor System Architectures: A Technical Survey of Mul-
tiprocessor/Multithreaded Systems Using SPARC, Multilevel Bus Architectures and
Solaris (SunOS). Prentice Hall, 1994. isbn: 0-13-089137-1.

[16] Adrian Chadd. Upcoming RSS enhancements to the FreeBSD Network Stack. http:
//www.freebsdnews.net/2014/07/31/bafug-july-2014/. July 2014.

[17] David Cheriton. “The V Distributed System”. In: Commun. ACM 31.3 (Mar. 1988),
pp. 314–333. issn: 0001-0782. doi: 10.1145/42392.42400. url: http://doi.acm.
org/10.1145/42392.42400.

[18] Melvin E. Conway. “Design of a Separable Transition-diagram Compiler”. In: Com-
mun. ACM 6.7 (July 1963), pp. 396–408. issn: 0001-0782. doi: 10.1145/366663.
366704. url: http://doi.acm.org/10.1145/366663.366704.

[19] E.C. Cooper and R. Draves. C Threads. Tech. rep. CMU-CS-88-154. Carnegie Mellon
Computer Science Dept., June 1988.

[20] Jonathan Corbet. LPC: Control Groups. http://lwn.net/Articles/459585/. Sept.
2011.

[21] Jonathan Corbet. (Nearly) full tickless operation in 3.10. http://lwn.net/Articles/
549580/. May 2013.

[22] Jonathan Corbet. Ticket Spinlocks. http://lwn.net/Articles/267968/. Feb. 2008.

[23] Systems Jan Edler et al. “Process Management for Highly Parallel UNIX Systems”.
In: Proceedings of the USENIX Workshop on Unix and Supercomputers. 1988, pp. 1–
17.

[24] Thorsten von Eicken et al. Active Messages: a Mechanism for Integrated Communi-
cation and. Tech. rep. Berkeley, CA, USA, 1992.

[25] Jason Evans. Kernel-Scheduled Entities for FreeBSD. http://www.cs.ucdavis.edu/

~wu/ecs251/KernelScheduledEntity_FreeBSD_2000.pdf. Nov. 2000.

[26] Alexandra Fedorova, Margo Seltzer, and Michael D. Smith. “Improving Performance
Isolation on Chip Multiprocessors via an Operating System Scheduler”. In: Proc. of
the International Conference on Parallel Architecture and Compilation Techniques
(PACT). 2007. isbn: 0-7695-2944-5. doi: http://dx.doi.org/10.1109/PACT.2007.
40.

http://dx.doi.org/10.1145/1218063.1217961
http://doi.acm.org/10.1145/1218063.1217961
http://doi.acm.org/10.1145/1218063.1217961
http://lwn.net/Articles/336224/
http://lwn.net/Articles/336224/
http://www.freebsdnews.net/2014/07/31/bafug-july-2014/
http://www.freebsdnews.net/2014/07/31/bafug-july-2014/
http://dx.doi.org/10.1145/42392.42400
http://doi.acm.org/10.1145/42392.42400
http://doi.acm.org/10.1145/42392.42400
http://dx.doi.org/10.1145/366663.366704
http://dx.doi.org/10.1145/366663.366704
http://doi.acm.org/10.1145/366663.366704
http://lwn.net/Articles/459585/
http://lwn.net/Articles/549580/
http://lwn.net/Articles/549580/
http://lwn.net/Articles/267968/
http://www.cs.ucdavis.edu/~wu/ecs251/KernelScheduledEntity_FreeBSD_2000.pdf
http://www.cs.ucdavis.edu/~wu/ecs251/KernelScheduledEntity_FreeBSD_2000.pdf
http://dx.doi.org/http://dx.doi.org/10.1109/PACT.2007.40
http://dx.doi.org/http://dx.doi.org/10.1109/PACT.2007.40

BIBLIOGRAPHY 164

[27] Dror G. Feitelson. Job Scheduling in Multiprogrammed Parallel Systems. 1997.

[28] Dror G. Feitelson and Larry Rudolph. “Gang Scheduling Performance Benefits for
Fine-Grain Synchronization”. In: Journal of Parallel and Distributed Computing 16
(1992), pp. 306–318.

[29] Kurt B. Ferreira, Patrick Bridges, and Ron Brightwell. “Characterizing application
sensitivity to OS interference using kernel-level noise injection”. In: SC ’08: Proceed-
ings of the 2008 ACM/IEEE conference on Supercomputing. Austin, Texas: IEEE
Press, 2008, pp. 1–12. isbn: 978-1-4244-2835-9.

[30] FreeBSD 7.0-RELEASE Release Notes. http://www.freebsd.org/releases/7.0R/
relnotes.html.

[31] Ruth E. Goldenberg. Open VMS Alpha Internals and Data Structures: Scheduling
and Process Control. Elsevier, 1997. isbn: 978-1555581565.

[32] Amit Gupta and Domenico Ferrari. “Resource partitioning for real-time communica-
tion”. In: IEEE/ACM Trans. Netw. 3.5 (1995), pp. 501–508. issn: 1063-6692. doi:
http://dx.doi.org/10.1109/90.469956.

[33] Sangjin Han et al. “MegaPipe: A New Programming Interface for Scalable Network
I/O”. In: Presented as part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12). Hollywood, CA: USENIX, 2012, pp. 135–
148. isbn: 978-1-931971-96-6. url: https://www.usenix.org/conference/osdi12/
technical-sessions/presentation/han.

[34] Per Brinch Hansen. “Structured Multiprogramming”. In: Commun. ACM 15.7 (July
1972), pp. 574–578. issn: 0001-0782. doi: 10.1145/361454.361473. url: http:

//doi.acm.org/10.1145/361454.361473.

[35] Per Brinch Hansen. “The Programming Language Concurrent Pascal.” In: IEEE
Trans. Software Eng. 1.2 (1975), pp. 199–207.

[36] Bijun He, William N. Scherer, and Michael L. Scott. “Preemption Adaptivity in
Time-published Queue-based Spin Locks”. In: Proceedings of the 12th International
Conference on High Performance Computing. HiPC’05. Goa, India: Springer-Verlag,
2005, pp. 7–18. isbn: 3-540-30936-5, 978-3-540-30936-9. doi: 10.1007/11602569_6.
url: http://dx.doi.org/10.1007/11602569_6.

[37] Maurice Herlihy. “Wait-free Synchronization”. In: ACM Trans. Program. Lang. Syst.
13.1 (Jan. 1991), pp. 124–149. issn: 0164-0925. doi: 10.1145/114005.102808. url:
http://doi.acm.org/10.1145/114005.102808.

[38] L.P. Hewlett-Packard Development Company. HP OpenVMS System Services Ref-
erence Manual. http://h71000.www7.hp.com/doc/84final/4527/4527pro_

contents.html. June 2010.

[39] Benjamin Hindman et al. Mesos: A platform for fine-grained resource sharing in the
data center,” UCBerkeley. Tech. rep. Online]. Available, 2010.

http://www.freebsd.org/releases/7.0R/relnotes.html
http://www.freebsd.org/releases/7.0R/relnotes.html
http://dx.doi.org/http://dx.doi.org/10.1109/90.469956
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/han
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/han
http://dx.doi.org/10.1145/361454.361473
http://doi.acm.org/10.1145/361454.361473
http://doi.acm.org/10.1145/361454.361473
http://dx.doi.org/10.1007/11602569_6
http://dx.doi.org/10.1007/11602569_6
http://dx.doi.org/10.1145/114005.102808
http://doi.acm.org/10.1145/114005.102808
http://h71000.www7.hp.com/doc/84final/4527/4527pro_contents.html
http://h71000.www7.hp.com/doc/84final/4527/4527pro_contents.html

BIBLIOGRAPHY 165

[40] C. A. R. Hoare. “Monitors: An Operating System Structuring Concept”. In: Commun.
ACM 17.10 (Oct. 1974), pp. 549–557. issn: 0001-0782. doi: 10.1145/355620.361161.
url: http://doi.acm.org/10.1145/355620.361161.

[41] Tim Hockin. “Control Loops in Userspace”. In: Linux Plumbers Conference. http://
www.linuxplumbersconf.org/2011/ocw/system/presentations/705/original/

Control_Loops_In_Userspace.pdf. 2011.

[42] Steven Hofmeyr et al. “Juggle: Proactive Load Balancing on Multicore Computers”.
In: Proceedings of the 20th International Symposium on High Performance Distributed
Computing. HPDC ’11. San Jose, California, USA: ACM, 2011, pp. 3–14. isbn: 978-
1-4503-0552-5. doi: 10.1145/1996130.1996134. url: http://doi.acm.org/10.
1145/1996130.1996134.

[43] IBM. IBM System/370 Extended Architecture, Principles of Operation. IBM Publi-
cation No. SA22-7085. 1983.

[44] Adaptive Computing Enterprises Inc. Maui Scheduler Administrator’s Guide. http:
//docs.adaptivecomputing.com/maui/index.php. 1999-2014.

[45] Apple Inc. Grand Central Dispatch (GCD) Reference. https://developer.apple.
com/library/mac/documentation/performance/reference/gcd_libdispatch_

ref/Reference/reference.html.

[46] Sun Microsystems Inc. JDK 1.1 for Solaris Developers’s Guide. http : / / docs .

oracle.com/cd/E19455-01/806-3461/book-info/index.html. 2000.

[47] David B. Jackson, Quinn Snell, and Mark J. Clement. “Core Algorithms of the Maui
Scheduler”. In: Revised Papers from the 7th International Workshop on Job Scheduling
Strategies for Parallel Processing. JSSPP ’01. London, UK, UK: Springer-Verlag, 2001,
pp. 87–102. isbn: 3-540-42817-8. url: http://dl.acm.org/citation.cfm?id=
646382.689682.

[48] Terry Jones et al. “Improving the Scalability of Parallel Jobs by adding Parallel
Awareness to the Operating System”. In: SC ’03: Proceedings of the 2003 ACM/IEEE
conference on Supercomputing. Washington, DC, USA: IEEE Computer Society, 2003,
p. 10. isbn: 1-58113-695-1.

[49] R. E. Kessler and Mark D. Hill. “Page Placement Algorithms for Large Real-indexed
Caches”. In: ACM Trans. Comput. Syst. 10.4 (Nov. 1992), pp. 338–359. issn: 0734-
2071. doi: 10.1145/138873.138876. url: http://doi.acm.org/10.1145/138873.
138876.

[50] Sanjay Kumar et al. Re-architecting VMMs for Multicore Systems: The Sidecore Ap-
proach. 2007.

[51] Leslie Lamport. “A New Solution of Dijkstra’s Concurrent Programming Problem”.
In: Commun. ACM 17.8 (Aug. 1974), pp. 453–455. issn: 0001-0782. doi: 10.1145/
361082.361093. url: http://doi.acm.org/10.1145/361082.361093.

http://dx.doi.org/10.1145/355620.361161
http://doi.acm.org/10.1145/355620.361161
http://www.linuxplumbersconf.org/2011/ocw/system/presentations/705/original/Control_Loops_In_Userspace.pdf
http://www.linuxplumbersconf.org/2011/ocw/system/presentations/705/original/Control_Loops_In_Userspace.pdf
http://www.linuxplumbersconf.org/2011/ocw/system/presentations/705/original/Control_Loops_In_Userspace.pdf
http://dx.doi.org/10.1145/1996130.1996134
http://doi.acm.org/10.1145/1996130.1996134
http://doi.acm.org/10.1145/1996130.1996134
http://docs.adaptivecomputing.com/maui/index.php
http://docs.adaptivecomputing.com/maui/index.php
https://developer.apple.com/library/mac/documentation/performance/reference/gcd_libdispatch_ref/Reference/reference.html
https://developer.apple.com/library/mac/documentation/performance/reference/gcd_libdispatch_ref/Reference/reference.html
https://developer.apple.com/library/mac/documentation/performance/reference/gcd_libdispatch_ref/Reference/reference.html
http://docs.oracle.com/cd/E19455-01/806-3461/book-info/index.html
http://docs.oracle.com/cd/E19455-01/806-3461/book-info/index.html
http://dl.acm.org/citation.cfm?id=646382.689682
http://dl.acm.org/citation.cfm?id=646382.689682
http://dx.doi.org/10.1145/138873.138876
http://doi.acm.org/10.1145/138873.138876
http://doi.acm.org/10.1145/138873.138876
http://dx.doi.org/10.1145/361082.361093
http://dx.doi.org/10.1145/361082.361093
http://doi.acm.org/10.1145/361082.361093

BIBLIOGRAPHY 166

[52] Butler W. Lampson. A description of the CEDAR language : a CEDAR reference
manual. Tech. rep. CSL-83-15. Xerox (Palo Alto, CA US), 1983. url: http://opac.
inria.fr/record=b1017007.

[53] Butler W. Lampson and David D. Redell. “Experience with Processes and Monitors
in Mesa”. In: Commun. ACM 23.2 (Feb. 1980), pp. 105–117. issn: 0001-0782. doi:
10.1145/358818.358824. url: http://doi.acm.org/10.1145/358818.358824.

[54] J. Lange et al. “Palacios and Kitten: New High Performance Operating Systems for
Scalable Virtualized and Native Supercomputing”. In: IPDPS ’10: Proceedings of the
24th IEEE International Parallel and Distributed Processing Symposium. Atlanta,
Georgia, USA: IEEE Computer Society, Apr. 2010.

[55] Edward A. Lee. “The Problem with Threads”. In: Computer 39.5 (May 2006), pp. 33–
42. issn: 0018-9162. doi: 10.1109/MC.2006.180. url: http://dx.doi.org/10.
1109/MC.2006.180.

[56] Jonathan Levin. GCD Internals: The Undocumented Side of the Grand Central Dis-
patcher. http://newosxbook.com/articles/GCD.html. Feb. 2014.

[57] Jialin Li et al. “Tales of the Tail: Hardware, OS, and Application-level Sources of Tail
Latency”. In: Proceedings of the ACM Symposium on Cloud Computing. SOCC ’14.
Seattle, WA, USA: ACM, 2014, 9:1–9:14. isbn: 978-1-4503-3252-1. doi: 10.1145/
2670979.2670988. url: http://doi.acm.org/10.1145/2670979.2670988.

[58] Linux Activations. http://moais.imag.fr/membres/vincent.danjean/linux-
activations.html.

[59] Michael J. Litzkow, Miron Livny, and Matt W. Mutka. “Condor - A Hunter of Idle
Workstations.” In: ICDCS. IEEE Computer Society, 1988, pp. 104–111. url: http:
//dblp.uni-trier.de/db/conf/icdcs/icdcs88.html#LitzkowLM88.

[60] lxc Linux Containers. http://lxc.sourceforge.net/.

[61] Brian D. Marsh et al. “First-Class User-Level Threads”. In: Proceedings of the Thir-
teenth ACM Symposium on Operating Systems Principles. 1991, pp. 110–121.

[62] Henry H. Mashburn. “The C.mmp/Hydra Project: An Architectural Overview”. In:
Computer Structures: Principles and Examples. Ed. by Daniel P. Siewiorek, C. Gordon
Bell, and Allen Newell. New Yor: McGraw-Hill Book Company, 1982.

[63] Maui Scheduler Open Cluster Software. http://mauischeduler.sourceforge.net/.

[64] Marissa Mayer. “Imagination, Immediacy, and Innovation... and a little glimpse under
the hood at Google”. In: Google I/O. Keynote Talk. 2008.

[65] Cathy McCann, Raj Vaswani, and John Zahorjan. “A Dynamic Processor Alloca-
tion Policy for Multiprogrammed Shared-memory Multiprocessors”. In: ACM Trans.
Comput. Syst. 11.2 (May 1993), pp. 146–178. issn: 0734-2071. doi: 10.1145/151244.
151246. url: http://doi.acm.org/10.1145/151244.151246.

http://opac.inria.fr/record=b1017007
http://opac.inria.fr/record=b1017007
http://dx.doi.org/10.1145/358818.358824
http://doi.acm.org/10.1145/358818.358824
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1109/MC.2006.180
http://newosxbook.com/articles/GCD.html
http://dx.doi.org/10.1145/2670979.2670988
http://dx.doi.org/10.1145/2670979.2670988
http://doi.acm.org/10.1145/2670979.2670988
http://moais.imag.fr/membres/vincent.danjean/linux-activations.html
http://moais.imag.fr/membres/vincent.danjean/linux-activations.html
http://dblp.uni-trier.de/db/conf/icdcs/icdcs88.html#LitzkowLM88
http://dblp.uni-trier.de/db/conf/icdcs/icdcs88.html#LitzkowLM88
http://lxc.sourceforge.net/
http://mauischeduler.sourceforge.net/
http://dx.doi.org/10.1145/151244.151246
http://dx.doi.org/10.1145/151244.151246
http://doi.acm.org/10.1145/151244.151246

BIBLIOGRAPHY 167

[66] Declan McCullagh. TurboTax e-filing woes draw customer ire. Ed. by CNET.com.
http://news.cnet.com/TurboTax-e-filing-woes-draw-customer-ire/2100-

1038_3-6177341.html. Apr. 2007.

[67] Paul R. McJones and Garret F. Swart. Evolving the Unix system interface to support
multithreaded programs. Tech. rep. Proceedings of the Winter 1989 USENIX Confer-
ence, 1987.

[68] Paul E. Mckenney et al. “Read-Copy Update”. In: Ottawa Linux Symposium. 2001,
pp. 338–367.

[69] John M. Mellor-Crummey and Michael L. Scott. “Algorithms for scalable synchroniza-
tion on shared-memory multiprocessors”. In: ACM Trans. Comput. Syst. 9.1 (1991),
pp. 21–65. issn: 0734-2071. doi: http://doi.acm.org/10.1145/103727.103729.

[70] Clifford Mercer, Stefan Savage, and Hideyuki Tokuda. “Processor Capacity Reserves
for Multimedia Operating Systems”. In: Proceedings of the IEEE International Con-
ference on Multimedia Computing and Systems. 1994.

[71] Microsoft. User-Mode Scheduling. url: http : / / msdn . microsoft . com / en - us /

library/windows/desktop/dd627187%28v=vs.85%29.aspx.

[72] Sun Microsystems. Multithreading in the Solaris Operating Environment. http://
home.mit.bme.hu/~meszaros/edu/oprendszerek/segedlet/unix/2_folyamatok_

es_utemezes/solaris_multithread.pdf. 2002.

[73] Aloysius K. Mok, Xiang (Alex) Feng, and Deji Chen. “Resource Partition for Real-
Time Systems”. In: RTAS ’01: Proceedings of the Seventh Real-Time Technology and
Applications Symposium (RTAS ’01). Washington, DC, USA: IEEE Computer Soci-
ety, 2001, p. 75.

[74] Ingo Molnar. 1:1 Threading vs. Scheduler Activations. http://lkml.org/lkml/

2002/9/24/33.

[75] José Moreira et al. “Designing a highly-scalable operating system: the Blue Gene/L
story”. In: Proceedings of the 2006 ACM/IEEE conference on Supercomputing. SC ’06.
Tampa, Florida: ACM, 2006. isbn: 0-7695-2700-0. doi: http://doi.acm.org/10.
1145/1188455.1188578. url: http://doi.acm.org/10.1145/1188455.1188578.

[76] David Mosberger and Tai Jin. “Httperf&Mdash;a Tool for Measuring Web Server
Performance”. In: SIGMETRICS Perform. Eval. Rev. 26.3 (Dec. 1998), pp. 31–37.
issn: 0163-5999. doi: 10.1145/306225.306235. url: http://doi.acm.org/10.
1145/306225.306235.

[77] Steve Muir and Jonathan Smith. “AsyMOS - An Asymmetric Multiprocessor Op-
erating System”. In: IEEE Conf on Open Architectures and Network Programming
(OPENARCH). 1998, pp. 25–34.

[78] K.J. Nesbit et al. “Multicore Resource Management”. In: Micro, IEEE 28.3 (May
2008), pp. 6–16. issn: 0272-1732. doi: 10.1109/MM.2008.43.

http://news.cnet.com/TurboTax-e-filing-woes-draw-customer-ire/2100-1038_3-6177341.html
http://news.cnet.com/TurboTax-e-filing-woes-draw-customer-ire/2100-1038_3-6177341.html
http://dx.doi.org/http://doi.acm.org/10.1145/103727.103729
http://msdn.microsoft.com/en-us/library/windows/desktop/dd627187%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd627187%28v=vs.85%29.aspx
http://home.mit.bme.hu/~meszaros/edu/oprendszerek/segedlet/unix/2_folyamatok_es_utemezes/solaris_multithread.pdf
http://home.mit.bme.hu/~meszaros/edu/oprendszerek/segedlet/unix/2_folyamatok_es_utemezes/solaris_multithread.pdf
http://home.mit.bme.hu/~meszaros/edu/oprendszerek/segedlet/unix/2_folyamatok_es_utemezes/solaris_multithread.pdf
http://lkml.org/lkml/2002/9/24/33
http://lkml.org/lkml/2002/9/24/33
http://dx.doi.org/http://doi.acm.org/10.1145/1188455.1188578
http://dx.doi.org/http://doi.acm.org/10.1145/1188455.1188578
http://doi.acm.org/10.1145/1188455.1188578
http://dx.doi.org/10.1145/306225.306235
http://doi.acm.org/10.1145/306225.306235
http://doi.acm.org/10.1145/306225.306235
http://dx.doi.org/10.1109/MM.2008.43

BIBLIOGRAPHY 168

[79] Old-computers.com. VAX 11/780, The First VAX System (October 1977). http:

//www.old-computers.com/history/detail.asp?n=20&t=3.

[80] OpenMP. http://openmp.org.

[81] J.K. Ousterhout. “Scheduling techniques for concurrent systems”. In: Proceedings of
the 3rd International Conference on Distributed Computing Systems. 1982, pp. 22–30.

[82] Heidi Pan. “Cooperative Hierarchical Resource Management for Efficient Composition
of Parallel Software”. PhD thesis. Massachusetts Institute of Technology, June 2010.

[83] Heidi Pan, Ben Hindman, and Krste Asanović. “Lithe: Enabling Efficient Composition
of Parallel Libraries”. In: Proc. of HotPar. 2009.

[84] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. “The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the 8,192 Proces-
sors of ASCI Q”. In: SC ’03: Proceedings of the 2003 ACM/IEEE conference on
Supercomputing. Washington, DC, USA: IEEE Computer Society, 2003, p. 55. isbn:
1-58113-695-1.

[85] Rob Pike et al. “Plan 9 from Bell Labs”. In: Proceedings of the Summer 1990 UKUUG
Conference. 1990, pp. 1–9.

[86] Rob Pike et al. “Process sleep and wakeup on a shared-memory multiprocessor”. In:
EurOpen Conference. 1991, pp. 161–166.

[87] Daniel Price and Andrew Tucker. “Solaris Zones: Operating System Support for
Consolidating Commercial Workloads”. In: Proceedings of the 18th USENIX Confer-
ence on System Administration. LISA ’04. Atlanta, GA: USENIX Association, 2004,
pp. 241–254. url: http://dl.acm.org/citation.cfm?id=1052676.1052707.

[88] David Probert. Evolution of the Windows Kernel Architecture. http://www.palermo.
edu/ingenieria/Oct2009.ppt. Aug. 2009.

[89] Alexander Rasmussen et al. “TritonSort A Balanced Large-Scale Sorting System”.
In: Proceedings of the 8th USENIX Symposium on Networked Systems Design and
Implementation. ACM, 2011.

[90] Greg Regnier et al. “TCP Onloading for Data Center Servers”. In: Computer 37.11
(Nov. 2004), pp. 48–58. issn: 0018-9162. doi: 10.1109/MC.2004.223. url: http:
//dx.doi.org/10.1109/MC.2004.223.

[91] James Reinders. Intel threading building blocks - outfitting C++ for multi-core pro-
cessor parallelism. O’Reilly, 2007, pp. I–XXV, 1–303. isbn: 978-0-596-51480-8.

[92] Injong Rhee and Chi-Yung Lee. “An Efficient Recovery-based Spin Lock Protocol for
Preemptive Shared-memory Multiprocessors”. In: Proceedings of the Fifteenth Annual
ACM Symposium on Principles of Distributed Computing. PODC ’96. Philadelphia,
Pennsylvania, USA: ACM, 1996, pp. 77–86. isbn: 0-89791-800-2. doi: 10 . 1145 /

248052.248063. url: http://doi.acm.org/10.1145/248052.248063.

http://www.old-computers.com/history/detail.asp?n=20&t=3
http://www.old-computers.com/history/detail.asp?n=20&t=3
http://openmp.org
http://dl.acm.org/citation.cfm?id=1052676.1052707
http://www.palermo.edu/ingenieria/Oct2009.ppt
http://www.palermo.edu/ingenieria/Oct2009.ppt
http://dx.doi.org/10.1109/MC.2004.223
http://dx.doi.org/10.1109/MC.2004.223
http://dx.doi.org/10.1109/MC.2004.223
http://dx.doi.org/10.1145/248052.248063
http://dx.doi.org/10.1145/248052.248063
http://doi.acm.org/10.1145/248052.248063

BIBLIOGRAPHY 169

[93] Rolf Riesen et al. “Designing and implementing lightweight kernels for capability
computing”. In: Concurr. Comput. : Pract. Exper. 21 (6 Apr. 2009), pp. 793–817. issn:
1532-0626. doi: 10.1002/cpe.v21:6. url: http://portal.acm.org/citation.
cfm?id=1526619.1526623.

[94] Jerome Howard Saltzer. “Traffic Control in a Multiplexed Computer System”. PhD
thesis. Massachusetts Institute of Technology, June 1966.

[95] Michael D. Schroeder and Jerome H. Saltzer. “A Hardware Architecture for Imple-
menting Protection Rings”. In: Commun. ACM 15.3 (Mar. 1972), pp. 157–170. issn:
0001-0782. doi: 10.1145/361268.361275. url: http://doi.acm.org/10.1145/
361268.361275.

[96] Michael L. Scott, Thomas J. Leblanc, and Brian D. Marsh. “Multi-model parallel
programming in Psyche”. In: Proceedings of the 2nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 1990, pp. 70–78.

[97] Michael L. Scott and William N. Scherer. “Scalable Queue-based Spin Locks with
Timeout”. In: Proceedings of the Eighth ACM SIGPLAN Symposium on Principles
and Practices of Parallel Programming. PPoPP ’01. Snowbird, Utah, USA: ACM,
2001, pp. 44–52. isbn: 1-58113-346-4. doi: 10.1145/379539.379566. url: http:
//doi.acm.org/10.1145/379539.379566.

[98] Christopher Small and Margo Seltzer. Scheduler Activations on BSD: Sharing Thread
Management Between Kernel and Application. Tech. rep. 1995.

[99] Livio Soares and Michael Stumm. “FlexSC: flexible system call scheduling with ex-
ception-less system calls”. In: Proceedings of the 9th USENIX conference on Operat-
ing systems design and implementation. OSDI’10. Vancouver, BC, Canada: USENIX
Association, 2010, pp. 1–8. url: http://portal.acm.org/citation.cfm?id=

1924943.1924946.

[100] Stephen Soltesz et al. “Container-based operating system virtualization: a scalable,
high-performance alternative to hypervisors”. In: SIGOPS Oper. Syst. Rev. 41.3
(2007), pp. 275–287. issn: 0163-5980. doi: http://doi.acm.org/10.1145/1272998.
1273025.

[101] Matthew J. Sottile and Ronald Minnich. “Analysis of microbenchmarks for perfor-
mance tuning of clusters.” In: CLUSTER. IEEE Computer Society, 2004, pp. 371–
377. url: http://dblp.uni-trier.de/db/conf/cluster/cluster2004.html#
SottileM04.

[102] George G. Sutherland et al. “Livermore Time-sharing System for the CDC 7600”.
In: SIGOPS Oper. Syst. Rev. 5.2-3 (June 1971), pp. 6–26. issn: 0163-5980. doi: 10.
1145/1232916.1232917. url: http://doi.acm.org/10.1145/1232916.1232917.

http://dx.doi.org/10.1002/cpe.v21:6
http://portal.acm.org/citation.cfm?id=1526619.1526623
http://portal.acm.org/citation.cfm?id=1526619.1526623
http://dx.doi.org/10.1145/361268.361275
http://doi.acm.org/10.1145/361268.361275
http://doi.acm.org/10.1145/361268.361275
http://dx.doi.org/10.1145/379539.379566
http://doi.acm.org/10.1145/379539.379566
http://doi.acm.org/10.1145/379539.379566
http://portal.acm.org/citation.cfm?id=1924943.1924946
http://portal.acm.org/citation.cfm?id=1924943.1924946
http://dx.doi.org/http://doi.acm.org/10.1145/1272998.1273025
http://dx.doi.org/http://doi.acm.org/10.1145/1272998.1273025
http://dblp.uni-trier.de/db/conf/cluster/cluster2004.html#SottileM04
http://dblp.uni-trier.de/db/conf/cluster/cluster2004.html#SottileM04
http://dx.doi.org/10.1145/1232916.1232917
http://dx.doi.org/10.1145/1232916.1232917
http://doi.acm.org/10.1145/1232916.1232917

BIBLIOGRAPHY 170

[103] R. J. Swan, S. H. Fuller, and D. P. Siewiorek. “Cm*: A Modular, Multi-microprocess-
or”. In: Proceedings of the June 13-16, 1977, National Computer Conference. AFIPS
’77. Dallas, Texas: ACM, 1977, pp. 637–644. doi: 10.1145/1499402.1499515. url:
http://doi.acm.org/10.1145/1499402.1499515.

[104] Daniel C. Swinehart et al. “A Structural View of the Cedar Programming Environ-
ment”. In: ACM Trans. Program. Lang. Syst. 8.4 (Aug. 1986), pp. 419–490. issn: 0164-
0925. doi: 10.1145/6465.6466. url: http://doi.acm.org/10.1145/6465.6466.

[105] Charles P. Thacker and Lawrence C. Stewart. “Firefly: A Multiprocessor Worksta-
tion”. In: SIGOPS Oper. Syst. Rev. 21.4 (Oct. 1987), pp. 164–172. issn: 0163-5980.
doi: 10.1145/36204.36199. url: http://doi.acm.org/10.1145/36204.36199.

[106] The Go Programming Language. http://golang.org/.

[107] James E. Thornton. “Parallel Operation in the Control Data 6600”. In: Proceedings of
the October 27-29, 1964, Fall Joint Computer Conference, Part II: Very High Speed
Computer Systems. AFIPS ’64 (Fall, part II). San Francisco, California: ACM, 1965,
pp. 33–40. doi: 10.1145/1464039.1464045. url: http://doi.acm.org/10.1145/
1464039.1464045.

[108] Paul Turner. User-level Threads. . . with threads. http://www.linuxplumbersconf.
org/2013/ocw/proposals/1653. 2013.

[109] Ultrix. http://osdata.com/oses/ultrix.htm.

[110] Ben Verghese, Anoop Gupta, and Mendel Rosenblum. “Performance isolation: shar-
ing and isolation in shared-memory multiprocessors”. In: ASPLOS-VIII: Proceed-
ings of the eighth international conference on Architectural support for programming
languages and operating systems. San Jose, California, United States: ACM, 1998,
pp. 181–192. isbn: 1-58113-107-0. doi: http://doi.acm.org/10.1145/291069.
291044.

[111] Frederic Weisbecker. Nohz cpusets. https://lkml.org/lkml/2011/8/15/245. Aug.
2011.

[112] Nathan J. Williams. “An Implementation of Scheduler Activations on the NetBSD
Operating System”. In: USENIX Annual Technical Conference. 2002, pp. 10–15.

[113] Robert W. Wisniewski, Leonidas I. Kontothanassis, and Michael L. Scott. “Scalable
Spin Locks for Multiprogrammed Systems.” In: IPPS. Ed. by Howard Jay Siegel.
IEEE Computer Society, 1994, pp. 583–589. isbn: 0-8186-5602-6. url: http://dblp.
uni-trier.de/db/conf/ipps/ipps1994.html#WisniewskiKS94.

[114] Derek Wright. “Cheap cycles from the desktop to the dedicated cluster: combining
opportunistic and dedicated scheduling with Condor”. In: Proceedings of the Linux
Clusters: The HPC Revolution conference. Champaign - Urbana, IL, June 2001.

http://dx.doi.org/10.1145/1499402.1499515
http://doi.acm.org/10.1145/1499402.1499515
http://dx.doi.org/10.1145/6465.6466
http://doi.acm.org/10.1145/6465.6466
http://dx.doi.org/10.1145/36204.36199
http://doi.acm.org/10.1145/36204.36199
http://golang.org/
http://dx.doi.org/10.1145/1464039.1464045
http://doi.acm.org/10.1145/1464039.1464045
http://doi.acm.org/10.1145/1464039.1464045
http://www.linuxplumbersconf.org/2013/ocw/proposals/1653
http://www.linuxplumbersconf.org/2013/ocw/proposals/1653
http://osdata.com/oses/ultrix.htm
http://dx.doi.org/http://doi.acm.org/10.1145/291069.291044
http://dx.doi.org/http://doi.acm.org/10.1145/291069.291044
https://lkml.org/lkml/2011/8/15/245
http://dblp.uni-trier.de/db/conf/ipps/ipps1994.html#WisniewskiKS94
http://dblp.uni-trier.de/db/conf/ipps/ipps1994.html#WisniewskiKS94

BIBLIOGRAPHY 171

[115] John Zahorjan, Ed Lazowska, and Derek Eager. “The Effect of Scheduling Discipline
on Spin Overhead in Shared Memory Parallel Systems”. In: IEEE Trans. Parallel
Distrib. Syst. 2.2 (Apr. 1991), pp. 180–198. issn: 1045-9219. doi: 10.1109/71.89064.
url: http://dx.doi.org/10.1109/71.89064.

[116] John Zahorjan and Cathy McCann. “Processor Scheduling in Shared Memory Multi-
processors”. In: Proceedings of the 1990 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems. SIGMETRICS ’90. New York, NY, USA:
ACM, 1990, pp. 214–225. isbn: 0-89791-359-0. doi: 10.1145/98457.98760. url:
http://doi.acm.org/10.1145/98457.98760.

http://dx.doi.org/10.1109/71.89064
http://dx.doi.org/10.1109/71.89064
http://dx.doi.org/10.1145/98457.98760
http://doi.acm.org/10.1145/98457.98760

	Contents
	List of Figures
	List of Tables
	Introduction
	Background on Operating Systems
	System Calls
	Threads, Concurrency, and Parallelism
	Scheduling and Competition
	Synchronization
	Performance Isolation

	The Basics of the Many-Core Process and Akaros
	MCP Basics
	Akaros Details

	Life for a Many-Core Process
	Procinfo and Procdata
	Virtual Cores
	MCPs from Creation to Entry
	User-level Scheduling
	Impact of Dedicated Cores

	Event Delivery
	Concurrent Queues for Payloads
	The Event Delivery Subsystem
	Never Miss an Important Event

	Virtual Core Preemption
	Preemption Basics
	Preemption Detection and Recovery Locks
	Handling Preemption

	Applications
	Fluidanimate
	Webserver

	Conclusion
	Bibliography

