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● Akaros: research operating system
○ Large-scale SMP / many-core architectures
○ Single nodes, typically in a data center
○ Mix of high-priority and low-priority applications

● Support for high-performance, parallel apps
○ Transparent access to physical resources
○ Spatial allocation of cores to processes
○ Applications schedule and manage their threads
○ Performance isolation / minimize interference

High Level View

2



Agenda

● Motivation
● Akaros background
● A brief history of threading and parallelism
● Parallel processes in Akaros (the MCP)
● Event delivery and preemption
● Evaluation
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Resurgence of Parallelism
● Uniprocessor 

performance plateau
● Increasing transistors
● Multiple cores at the 

max clock speed

Graph source: “The Free Lunch is Over: A 
Fundamental Turn Toward Concurrency in Software” 
http://www.gotw.ca/publications/concurrency-ddj.htm 4



Resurgence of Parallelism

● Large-scale SMP machines are on the rise
● Parallelism is not new; can learn from the past
● The largest machines will be in data centers
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Data Centers: 
   Low Latency and Batch Workloads
● Live service jobs (low latency, high priority):

○ Minimize latency, especially tail latency
○ Predictable, efficient performance
○ Guaranteed resources for peak workload

● Batch jobs:
○ Low priority
○ Fill in the peak-to-average gap
○ No guarantee for resources
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Data Center Provisioning

"Every year, we take the busiest minute of the 
busiest hour of the busiest day and build 
capacity on that"

-- Scott Gulbransen, a spokesman for Intuit

http://news.cnet.com/TurboTax-e-filing-woes-draw-customer-ire/2100-1038_3-6177341.html
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Peak-to-Average Gap

http://www.ditii.com/2012/07/19/windows-azure-storage-hits-4-trillion-objects-mark-process-270k-rps-increases-wi
ndows-azure-web-sites-reserve-instances/

Windows Azure Storage Throughput
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Parallel OSs Should Provide:

● High, predictable performance
○ Minimal interference
○ Raw access to physical resources

● Adaptability to dynamic workloads
○ Exploit the peak-to-average gap

● Abstractions and interfaces for utilizing 
parallel processors
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Akaros: Philosophy of Transparency

● Expose info about the underlying system
● Provide interfaces to control guaranteed, 

allocated resources
● Virtual resources for naming, not for deception

○ Processes use virtual memory and paging
○ Can view their page tables
○ Physical memory is pinned - no swapping
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Akaros’s Features
● Spatially allocated, dedicated cores to processes
● User-level thread schedulers running at high 

frequency (or any frequency)
● Low frequency resource reallocation, typically 

driven by cluster managers
● Control over IRQ routing: no unexpected 

interrupts on dedicated cores
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Provisioning vs. Allocation
Provisioning:
● Guaranteed future access to resources
● Used for low-latency services

○ Amount based on peak load
○ Amount used at any time may be less

Allocation:
● The actual granting of the resource (dynamic)
● When provisioned, uninterruptible, irrevocable
● Without, can be revoked at any time

○ Used for batch jobs 12



Akaros Programming Environment

● GCC toolchain, x86 and RISCV, 32/64 bit
● Glibc and the Go runtime ported
● Some POSIX support (basic pthread apps)
● Plan 9 namespaces and network stack
● Custom extensions for Akaros (parlib)
● Barebones system
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Classic Threading Models - 1:1
1:1 - One kernel thread/task per user thread
● Heavy-weight threads, visible to the kernel
● Threads shared an address space
● Scheduling decisions made by kernel
● Mesa/Cedar, Topaz, pthreads on Linux.
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Classic Threading Models - M:1
M:1 - Many user threads per kernel thread
● Lightweight threads, fast context switches
● Scheduling decisions made by the application
● If one thread blocks, the entire process stalls
● Cannot exploit multiple processors 
● Coroutines, Java’s Green Threads,    

Capriccio (which avoided blocking I/O)
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Classic Threading Models - M:N
M:N - Many user threads on many kernel threads
● User threads are scheduled and managed by the 

application on a set of kernel threads
● If a kernel thread blocks, the process can 

continue on other kernel threads
● The number of kernel threads may vary over time
● Solaris’s Light Weight Processes, Scheduler 

Activations, Psyche, Go
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Many-Core Process (MCP)
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MCP

● Treat parallel processes as a single entity
○ Gang scheduled, no kernel thread per “pthread”/core
○ Single address space

● The process is aware of its state
○ Number of cores, which ones are running, etc

● Allows 2-Level scheduling (2LS), spinlocks, etc18



Cores != Threads

● Cores are for parallelism
● Threads are for concurrency (blocking I/O)
● Kernel threads are not part of the interface
● Blocking (syscall, page fault) doesn’t mean 

the process loses the core
● Notified of and can handle changing 

numbers of cores
● Process has full control over upcalls/events 19



Life for an MCP
● No unexpected interrupts
● Long time quanta
● Shared memory pages with the kernel

○ Procinfo (read-only), procdata (read-write)
● Have a set of virtual cores (vcores)

○ Pinned to physical cores when running
○ Can see the vcoremap
○ Each vcore has an “interrupt handling” context

● Schedule your own threads
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Kernel Scheduling

● Different types of cores (can be dynamic)
● MCPs run on Coarse-Grained (CG) cores

○ No timer IRQs or per-core scheduler
○ Will run in kernel mode for IPIs for start-up/tear-down

● SCPs (single core processes), daemons, etc, 
run on Low-Latency (LL) cores
○ Management tasks, high frequency timer tick
○ Scheduler runs on an LL core (Core 0)
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Vcore Context
● Analogous to interrupt 

context in OSes
● Handles events and 

schedules threads
● Has its own stack and 

per-vcore storage
● Event driven
● IPIs / software IRQs 

disabled 22



Asynchronous Syscall Interface

● The struct syscall is the contract with the kernel
● The kernel may use threads and block 

internally, but userspace doesn’t know or care
● User threads (uthreads) that issued syscalls 

that blocked in the kernel hand off to the 2LS
● Userspace / 2LS can poll or request an event
● Can process syscalls on remote cores
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What about Page Faults?

● Kernel will handle any soft faults (no blocking)
● Unhandled faults are reflected to userspace
● Faults in “vcore context” kill the process
● Pin critical code/data
● Uthreads that PF on file-backed mmaps are 

serviced by the 2LS via a syscall
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Event Delivery

● Events are decoupled from vcore context
○ Unlike Scheduler Activations and Psyche
○ Much more flexible

● Important to never miss messages
○ User space manages its cores, so it is partly responsible
○ Analogous to the “wakeup waiter” problem

● User and kernel work together in shared memory
○ Vcore context code will not exit when notif_pending is set
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Event Queues

● Event delivery interface: struct event_queue
● Contains storage for events with payloads
● Can be used when exactly one message 

must be sent (e.g. syscall completion)
● Various delivery options:

○ IPI a particular vcore
○ Guaranteed delivery

● Shared memory; pass a pointer to the kernel
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Unbounded Concurrent Queues (UCQ)

● Data structure for storing event payloads
● Multiple producer, multiple consumer
● Producer (kernel) does not trust consumer
● Linked-list of mmapped pages

27



UCQs

● Kernel mmaps extra pages on demand
○ Limited by the RAM available to the process
○ Maintains a swap page to avoid excessive mmaps
○ Consumer munmaps extra pages 28



Dealing with Preempted Cores

● The kernel will revoke cores from low-priority 
processes to satisfy a provisioned request

● Provisioned resources will not be revoked
● Any delay in preempting backfilled resources 

hurts the rightful owner of the resources
● When cores are revoked, the code halted 

could be in a critical section (holding locks)
29



How Older Systems Coped

● Psyche: “two-minute warning” message
○ User should clean up and yield
○ If not, preempt, and hope that “vcore” will run again
○ “vcores” are always pinned to specific physical cores

● Scheduler Activations: send an activation
○ Preempt, then halt another core to send a message
○ Userspace must choose which halted core to run
○ Tried to detect critical sections; not foolproof 
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Akaros Preemption Handling

● Akaros’s tools:
○ Processes can see which vcores are online
○ Vcores can context switch to preempted vcores

● Two-part solution to preemption:
○ Preemption Detection and Recovery locks (PDR)
○ Spam preemption events, idempotent handler
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PDR Locks

● Threads that spin on locks ensure the 
lock-holder is not preempted

● Atomically “sign up” and publish vcoreid
● Simple for basic spinlocks: 

○ Compare-and-swap, -1 means unlocked, vcoreid o/w
○ Spinners change to the lock-holder if it is preempted

● More complicated for MCS (queue) locks
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MCS-PDR Locks
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Preemption Event Handler

● Key insight: clean up, like with a “two-minute 
warning”, but use time in the future 
○ The handling vcore cleans itself up, then changes to 

the preempted vcore
○ Can always send more messages in corner cases

● More advanced: the handler can steal a 
uthread from the other vcore’s shared memory

● Must check for messages in a vcore’s queue
34



Evaluation / Microbenchmarks

● Intel Xeon E5-2670, 2.6GHz
● Sandy Bridge
● 16 Cores, 32 hyperthreads
● 256 GB RAM
● Linux 3.11, Ubuntu
● This machine is called “c89”
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Thread Context Switch Latency

● Thread context-switch latency
● Pthread program:

pthread_thread() {
for num_loops

pthread_yield();
}
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Thread Context Switch Latency
Values in nsec

Linux 
Pthreads with 

TLS

Linux 
Uthreads with 

TLS

Linux 
Uthreads 

without TLS

Akaros 
Uthreads with 

TLS

Akaros 
Uthreads 

without TLS

1 Thread 254 474 251 340 174

2 Threads 465 477 251 340 172

100 Threads 660 515 268 366 194

1000 Threads 812 583 291 408 221

● Thread local storage (TLS) hurts
● Uthread (2LS) scheduler is slow 37



Akaros User Context Switch Latency

● TLS, dumb scheduler, untuned
● Akaros’s user threading library (uthread.c) 

allows individual threads to have TLS or not
● All context switches drop into vcore context

Times in nsec

With TLS No TLS
No Locking in 

Scheduler
No Locking, 
No asserts

Switch_to 
(bypass 2LS 

decision)
2 threads 340 172 95 88 55

100 threads 366 194 113 105
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Isolation, Interference, and Noise

● Fixed Time Quantum benchmark
○ Sottile and Minnich, Analysis of Microbenchmarks 

for Performance Tuning of Clusters, Cluster 2004
○ github.com/rminnich/ftq

● Perform work in a constant time interval
○ FTQ parameter: frequency of samples (e.g. 10KHz)

● FFT the result to detect periodic interference
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Raw Data: Linux, Single Core

40



Linux, Single Core (31), 3000 Hz
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Linux, Single Core (31), 500 Hz
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Linux, Single Core (31), 100 Hz
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Old Akaros, Single Core, 100 Hz
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FFTs: c89, Core 31, 3000 Hz

             Linux                                 Akaros
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FFTs: c89, Core 31, 500 Hz

             Linux                                 Akaros
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FFTs: c89, Core 31, 100 Hz

             Linux                                 Akaros
47



Let’s Try a Smaller Machine

● Intel Nehalem Core i7-920, 2.6GHz
● Single Socket
● 4 Cores, 8 hyperthreads
● 3 GB RAM
● Linux 3.11.1-gentoo
● This machine is called “hossin”
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FFTs: Hossin, Core 7, 3000 Hz

             Linux                                 Akaros
49



FFTs: Hossin, Core 7, 500 Hz

             Linux                                 Akaros
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FFTs: Hossin, Core 7, 100 Hz

             Linux                                 Akaros
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Isolation Summary

● Akaros’s MCP cores have less noise and 
fewer signals compared to Linux

● The platform may be the source for various 
signals.  e.g. System Management Mode

● Isolated cores come at a cost: housekeeping 
and IRQs are routed to Core 0
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Applications

● Fluidanimate (PARSEC benchmark)
○ Requires a power-of-two number of threads

■ For a non-ideal number of cores, we may want 
many threads

○ Compute bound, operates in phases with barriers
○ Uses pthreads

● Kweb
○ Simple webserver, serves static files
○ Can use pthreads or a customized scheduler
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Fluidanimate: Adapting to Preemption

User-level threading increases resilience to 
losing cores 54



Kweb: Customized Scheduling

● Want all cores on a single socket (IRQ routing)
● Spin-poll for events (syscall completion)
● Turn off one sibling in a hyperthreaded pair
● We could process new requests as soon as a 

syscall blocks
○ Too much concurrency actually decreases overall 

performance (in this case)
○ Akaros’s networking stack needs work
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Kweb Throughput

Requests per second Avg. Min. Max. Std.

Linux 165,558 159,103 167,703 2395

Akaros, Pthreads,
6 VCs, Hyperthreads

134,676 133,121 135,567 635

Akaros, Pthreads,
6 VCs, No Hyperthreads

162,885 160,488 166,035 1661

Akaros, Custom 2LS, 
6 Worker cores

170,315 168,094 172,045 766

httperf: 100 connections of 100,000 calls each, bursts of 100
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Adapting to Changing Demands
● Kweb changes its 

resource requests
● Kernel preempts from 

fluidanimate to satisfy 
kweb’s provision

● Kweb is not affected 
by fluidanimate
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Summary

● Akaros: OS for high perf / parallel apps
○ Transparent access to physical resources
○ Provision and allocate ‘bare-metal’ resources
○ Single nodes, typically in a data center

● OS parallel process abstraction: MCP
○ Cores != Threads
○ Spatial allocation of cores to processes
○ Applications schedule and manage their threads
○ Performance isolation / minimize interference
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backup
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Hossin Raw FTQ
Akaros: only 12 variations out of 500,000+ samples.               Linux over here
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MCS locks with preemption
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Plan 9 Stack

● Replacing our VFS with Plan 9 namespaces
○ Used Coccinelle to transform for Akaros
○ Ron and I can port a Plan 9 NIC driver in an hour

● Still have glibc, it just uses Plan 9 devices
● Work in progress to build mmap() for Plan 9
● Currently, we have an uneasy mix of VFS 

(with an in-memory FS) and Plan 9
● Plan 9’s networking stack needs work
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MCS Lock Acquisition Latency
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Custom Kweb: Throughput vs Cores
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Kernel Perspective
● Monolithic kernel
● Can run the kernel anywhere; choose to run 

most of the kernel on a subset of cores
● Userspace determines where syscalls run

○ Locally, via sysenter/syscall traps into the kernel
○ Remotely, via shared memory rings (requires server)

● Designed to handle tricky circumstances
○ e.g. syscall completion event sent during preemption 

recovery of a lock-holder, while yielding spare cores 67



Summary
● Akaros: research OS for high perf / parallel apps
● Provision and allocate ‘bare-metal’ resources
● Process model: cores != threads
● Go, Plan 9, and Glibc
● More info:

○ github.com/brho/akaros.git
○ http://akaros.cs.berkeley.edu/ 

● The giraffe’s name is Nanwan
68
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