
Operating System
Support for Parallel

Processes
Barret Rhoden

2014-12-08

● Akaros: research operating system
○ Large-scale SMP / many-core architectures
○ Single nodes, typically in a data center
○ Mix of high-priority and low-priority applications

● Support for high-performance, parallel apps
○ Transparent access to physical resources
○ Spatial allocation of cores to processes
○ Applications schedule and manage their threads
○ Performance isolation / minimize interference

High Level View

2

Agenda

● Motivation
● Akaros background
● A brief history of threading and parallelism
● Parallel processes in Akaros (the MCP)
● Event delivery and preemption
● Evaluation

3

Resurgence of Parallelism
● Uniprocessor

performance plateau
● Increasing transistors
● Multiple cores at the

max clock speed

Graph source: “The Free Lunch is Over: A
Fundamental Turn Toward Concurrency in Software”
http://www.gotw.ca/publications/concurrency-ddj.htm 4

Resurgence of Parallelism

● Large-scale SMP machines are on the rise
● Parallelism is not new; can learn from the past
● The largest machines will be in data centers

5

Data Centers:
 Low Latency and Batch Workloads
● Live service jobs (low latency, high priority):

○ Minimize latency, especially tail latency
○ Predictable, efficient performance
○ Guaranteed resources for peak workload

● Batch jobs:
○ Low priority
○ Fill in the peak-to-average gap
○ No guarantee for resources

6

Data Center Provisioning

"Every year, we take the busiest minute of the
busiest hour of the busiest day and build
capacity on that"

-- Scott Gulbransen, a spokesman for Intuit

http://news.cnet.com/TurboTax-e-filing-woes-draw-customer-ire/2100-1038_3-6177341.html

7

Peak-to-Average Gap

http://www.ditii.com/2012/07/19/windows-azure-storage-hits-4-trillion-objects-mark-process-270k-rps-increases-wi
ndows-azure-web-sites-reserve-instances/

Windows Azure Storage Throughput

8

Parallel OSs Should Provide:

● High, predictable performance
○ Minimal interference
○ Raw access to physical resources

● Adaptability to dynamic workloads
○ Exploit the peak-to-average gap

● Abstractions and interfaces for utilizing
parallel processors

9

Akaros: Philosophy of Transparency

● Expose info about the underlying system
● Provide interfaces to control guaranteed,

allocated resources
● Virtual resources for naming, not for deception

○ Processes use virtual memory and paging
○ Can view their page tables
○ Physical memory is pinned - no swapping

10

Akaros’s Features
● Spatially allocated, dedicated cores to processes
● User-level thread schedulers running at high

frequency (or any frequency)
● Low frequency resource reallocation, typically

driven by cluster managers
● Control over IRQ routing: no unexpected

interrupts on dedicated cores
11

Provisioning vs. Allocation
Provisioning:
● Guaranteed future access to resources
● Used for low-latency services

○ Amount based on peak load
○ Amount used at any time may be less

Allocation:
● The actual granting of the resource (dynamic)
● When provisioned, uninterruptible, irrevocable
● Without, can be revoked at any time

○ Used for batch jobs 12

Akaros Programming Environment

● GCC toolchain, x86 and RISCV, 32/64 bit
● Glibc and the Go runtime ported
● Some POSIX support (basic pthread apps)
● Plan 9 namespaces and network stack
● Custom extensions for Akaros (parlib)
● Barebones system

13

Classic Threading Models - 1:1
1:1 - One kernel thread/task per user thread
● Heavy-weight threads, visible to the kernel
● Threads shared an address space
● Scheduling decisions made by kernel
● Mesa/Cedar, Topaz, pthreads on Linux.

14

Classic Threading Models - M:1
M:1 - Many user threads per kernel thread
● Lightweight threads, fast context switches
● Scheduling decisions made by the application
● If one thread blocks, the entire process stalls
● Cannot exploit multiple processors
● Coroutines, Java’s Green Threads,

Capriccio (which avoided blocking I/O)
15

Classic Threading Models - M:N
M:N - Many user threads on many kernel threads
● User threads are scheduled and managed by the

application on a set of kernel threads
● If a kernel thread blocks, the process can

continue on other kernel threads
● The number of kernel threads may vary over time
● Solaris’s Light Weight Processes, Scheduler

Activations, Psyche, Go
16

Many-Core Process (MCP)

17

MCP

● Treat parallel processes as a single entity
○ Gang scheduled, no kernel thread per “pthread”/core
○ Single address space

● The process is aware of its state
○ Number of cores, which ones are running, etc

● Allows 2-Level scheduling (2LS), spinlocks, etc18

Cores != Threads

● Cores are for parallelism
● Threads are for concurrency (blocking I/O)
● Kernel threads are not part of the interface
● Blocking (syscall, page fault) doesn’t mean

the process loses the core
● Notified of and can handle changing

numbers of cores
● Process has full control over upcalls/events 19

Life for an MCP
● No unexpected interrupts
● Long time quanta
● Shared memory pages with the kernel

○ Procinfo (read-only), procdata (read-write)
● Have a set of virtual cores (vcores)

○ Pinned to physical cores when running
○ Can see the vcoremap
○ Each vcore has an “interrupt handling” context

● Schedule your own threads
20

Kernel Scheduling

● Different types of cores (can be dynamic)
● MCPs run on Coarse-Grained (CG) cores

○ No timer IRQs or per-core scheduler
○ Will run in kernel mode for IPIs for start-up/tear-down

● SCPs (single core processes), daemons, etc,
run on Low-Latency (LL) cores
○ Management tasks, high frequency timer tick
○ Scheduler runs on an LL core (Core 0)

21

Vcore Context
● Analogous to interrupt

context in OSes
● Handles events and

schedules threads
● Has its own stack and

per-vcore storage
● Event driven
● IPIs / software IRQs

disabled 22

Asynchronous Syscall Interface

● The struct syscall is the contract with the kernel
● The kernel may use threads and block

internally, but userspace doesn’t know or care
● User threads (uthreads) that issued syscalls

that blocked in the kernel hand off to the 2LS
● Userspace / 2LS can poll or request an event
● Can process syscalls on remote cores

23

What about Page Faults?

● Kernel will handle any soft faults (no blocking)
● Unhandled faults are reflected to userspace
● Faults in “vcore context” kill the process
● Pin critical code/data
● Uthreads that PF on file-backed mmaps are

serviced by the 2LS via a syscall

24

Event Delivery

● Events are decoupled from vcore context
○ Unlike Scheduler Activations and Psyche
○ Much more flexible

● Important to never miss messages
○ User space manages its cores, so it is partly responsible
○ Analogous to the “wakeup waiter” problem

● User and kernel work together in shared memory
○ Vcore context code will not exit when notif_pending is set

25

Event Queues

● Event delivery interface: struct event_queue
● Contains storage for events with payloads
● Can be used when exactly one message

must be sent (e.g. syscall completion)
● Various delivery options:

○ IPI a particular vcore
○ Guaranteed delivery

● Shared memory; pass a pointer to the kernel
26

Unbounded Concurrent Queues (UCQ)

● Data structure for storing event payloads
● Multiple producer, multiple consumer
● Producer (kernel) does not trust consumer
● Linked-list of mmapped pages

27

UCQs

● Kernel mmaps extra pages on demand
○ Limited by the RAM available to the process
○ Maintains a swap page to avoid excessive mmaps
○ Consumer munmaps extra pages 28

Dealing with Preempted Cores

● The kernel will revoke cores from low-priority
processes to satisfy a provisioned request

● Provisioned resources will not be revoked
● Any delay in preempting backfilled resources

hurts the rightful owner of the resources
● When cores are revoked, the code halted

could be in a critical section (holding locks)
29

How Older Systems Coped

● Psyche: “two-minute warning” message
○ User should clean up and yield
○ If not, preempt, and hope that “vcore” will run again
○ “vcores” are always pinned to specific physical cores

● Scheduler Activations: send an activation
○ Preempt, then halt another core to send a message
○ Userspace must choose which halted core to run
○ Tried to detect critical sections; not foolproof

30

Akaros Preemption Handling

● Akaros’s tools:
○ Processes can see which vcores are online
○ Vcores can context switch to preempted vcores

● Two-part solution to preemption:
○ Preemption Detection and Recovery locks (PDR)
○ Spam preemption events, idempotent handler

31

PDR Locks

● Threads that spin on locks ensure the
lock-holder is not preempted

● Atomically “sign up” and publish vcoreid
● Simple for basic spinlocks:

○ Compare-and-swap, -1 means unlocked, vcoreid o/w
○ Spinners change to the lock-holder if it is preempted

● More complicated for MCS (queue) locks

32

MCS-PDR Locks

33

Preemption Event Handler

● Key insight: clean up, like with a “two-minute
warning”, but use time in the future
○ The handling vcore cleans itself up, then changes to

the preempted vcore
○ Can always send more messages in corner cases

● More advanced: the handler can steal a
uthread from the other vcore’s shared memory

● Must check for messages in a vcore’s queue
34

Evaluation / Microbenchmarks

● Intel Xeon E5-2670, 2.6GHz
● Sandy Bridge
● 16 Cores, 32 hyperthreads
● 256 GB RAM
● Linux 3.11, Ubuntu
● This machine is called “c89”

35

Thread Context Switch Latency

● Thread context-switch latency
● Pthread program:

pthread_thread() {
for num_loops

pthread_yield();
}

36

Thread Context Switch Latency
Values in nsec

Linux
Pthreads with

TLS

Linux
Uthreads with

TLS

Linux
Uthreads

without TLS

Akaros
Uthreads with

TLS

Akaros
Uthreads

without TLS

1 Thread 254 474 251 340 174

2 Threads 465 477 251 340 172

100 Threads 660 515 268 366 194

1000 Threads 812 583 291 408 221

● Thread local storage (TLS) hurts
● Uthread (2LS) scheduler is slow 37

Akaros User Context Switch Latency

● TLS, dumb scheduler, untuned
● Akaros’s user threading library (uthread.c)

allows individual threads to have TLS or not
● All context switches drop into vcore context

Times in nsec

With TLS No TLS
No Locking in

Scheduler
No Locking,
No asserts

Switch_to
(bypass 2LS

decision)
2 threads 340 172 95 88 55

100 threads 366 194 113 105

38

Isolation, Interference, and Noise

● Fixed Time Quantum benchmark
○ Sottile and Minnich, Analysis of Microbenchmarks

for Performance Tuning of Clusters, Cluster 2004
○ github.com/rminnich/ftq

● Perform work in a constant time interval
○ FTQ parameter: frequency of samples (e.g. 10KHz)

● FFT the result to detect periodic interference

39

Raw Data: Linux, Single Core

40

Linux, Single Core (31), 3000 Hz

41

Linux, Single Core (31), 500 Hz

42

Linux, Single Core (31), 100 Hz

43

Old Akaros, Single Core, 100 Hz

44

FFTs: c89, Core 31, 3000 Hz

 Linux Akaros
45

FFTs: c89, Core 31, 500 Hz

 Linux Akaros
46

FFTs: c89, Core 31, 100 Hz

 Linux Akaros
47

Let’s Try a Smaller Machine

● Intel Nehalem Core i7-920, 2.6GHz
● Single Socket
● 4 Cores, 8 hyperthreads
● 3 GB RAM
● Linux 3.11.1-gentoo
● This machine is called “hossin”

48

FFTs: Hossin, Core 7, 3000 Hz

 Linux Akaros
49

FFTs: Hossin, Core 7, 500 Hz

 Linux Akaros
50

FFTs: Hossin, Core 7, 100 Hz

 Linux Akaros
51

Isolation Summary

● Akaros’s MCP cores have less noise and
fewer signals compared to Linux

● The platform may be the source for various
signals. e.g. System Management Mode

● Isolated cores come at a cost: housekeeping
and IRQs are routed to Core 0

52

Applications

● Fluidanimate (PARSEC benchmark)
○ Requires a power-of-two number of threads

■ For a non-ideal number of cores, we may want
many threads

○ Compute bound, operates in phases with barriers
○ Uses pthreads

● Kweb
○ Simple webserver, serves static files
○ Can use pthreads or a customized scheduler

53

Fluidanimate: Adapting to Preemption

User-level threading increases resilience to
losing cores 54

Kweb: Customized Scheduling

● Want all cores on a single socket (IRQ routing)
● Spin-poll for events (syscall completion)
● Turn off one sibling in a hyperthreaded pair
● We could process new requests as soon as a

syscall blocks
○ Too much concurrency actually decreases overall

performance (in this case)
○ Akaros’s networking stack needs work

55

Kweb Throughput

Requests per second Avg. Min. Max. Std.

Linux 165,558 159,103 167,703 2395

Akaros, Pthreads,
6 VCs, Hyperthreads

134,676 133,121 135,567 635

Akaros, Pthreads,
6 VCs, No Hyperthreads

162,885 160,488 166,035 1661

Akaros, Custom 2LS,
6 Worker cores

170,315 168,094 172,045 766

httperf: 100 connections of 100,000 calls each, bursts of 100

56

Adapting to Changing Demands
● Kweb changes its

resource requests
● Kernel preempts from

fluidanimate to satisfy
kweb’s provision

● Kweb is not affected
by fluidanimate

57

Summary

● Akaros: OS for high perf / parallel apps
○ Transparent access to physical resources
○ Provision and allocate ‘bare-metal’ resources
○ Single nodes, typically in a data center

● OS parallel process abstraction: MCP
○ Cores != Threads
○ Spatial allocation of cores to processes
○ Applications schedule and manage their threads
○ Performance isolation / minimize interference

58

Thanks!

● Eric Brewer
● Krste Asanović, David Culler, David Wessel,

John Chuang
● Kevin Klues, David Zhu, Andrew Waterman,

Paul Pearce
● Ron Minnich, Andrew Gallatin,

Tamara Broderick
● NSF grants #1320005 and #1016714 59

60

backup

61

Hossin Raw FTQ
Akaros: only 12 variations out of 500,000+ samples. Linux over here

62

MCS locks with preemption

63

Plan 9 Stack

● Replacing our VFS with Plan 9 namespaces
○ Used Coccinelle to transform for Akaros
○ Ron and I can port a Plan 9 NIC driver in an hour

● Still have glibc, it just uses Plan 9 devices
● Work in progress to build mmap() for Plan 9
● Currently, we have an uneasy mix of VFS

(with an in-memory FS) and Plan 9
● Plan 9’s networking stack needs work

64

MCS Lock Acquisition Latency

65

Custom Kweb: Throughput vs Cores

66

Kernel Perspective
● Monolithic kernel
● Can run the kernel anywhere; choose to run

most of the kernel on a subset of cores
● Userspace determines where syscalls run

○ Locally, via sysenter/syscall traps into the kernel
○ Remotely, via shared memory rings (requires server)

● Designed to handle tricky circumstances
○ e.g. syscall completion event sent during preemption

recovery of a lock-holder, while yielding spare cores 67

Summary
● Akaros: research OS for high perf / parallel apps
● Provision and allocate ‘bare-metal’ resources
● Process model: cores != threads
● Go, Plan 9, and Glibc
● More info:

○ github.com/brho/akaros.git
○ http://akaros.cs.berkeley.edu/

● The giraffe’s name is Nanwan
68

http://github.com/brho/akaros.git
http://github.com/brho/akaros.git
http://akaros.cs.berkeley.edu/
http://akaros.cs.berkeley.edu/

